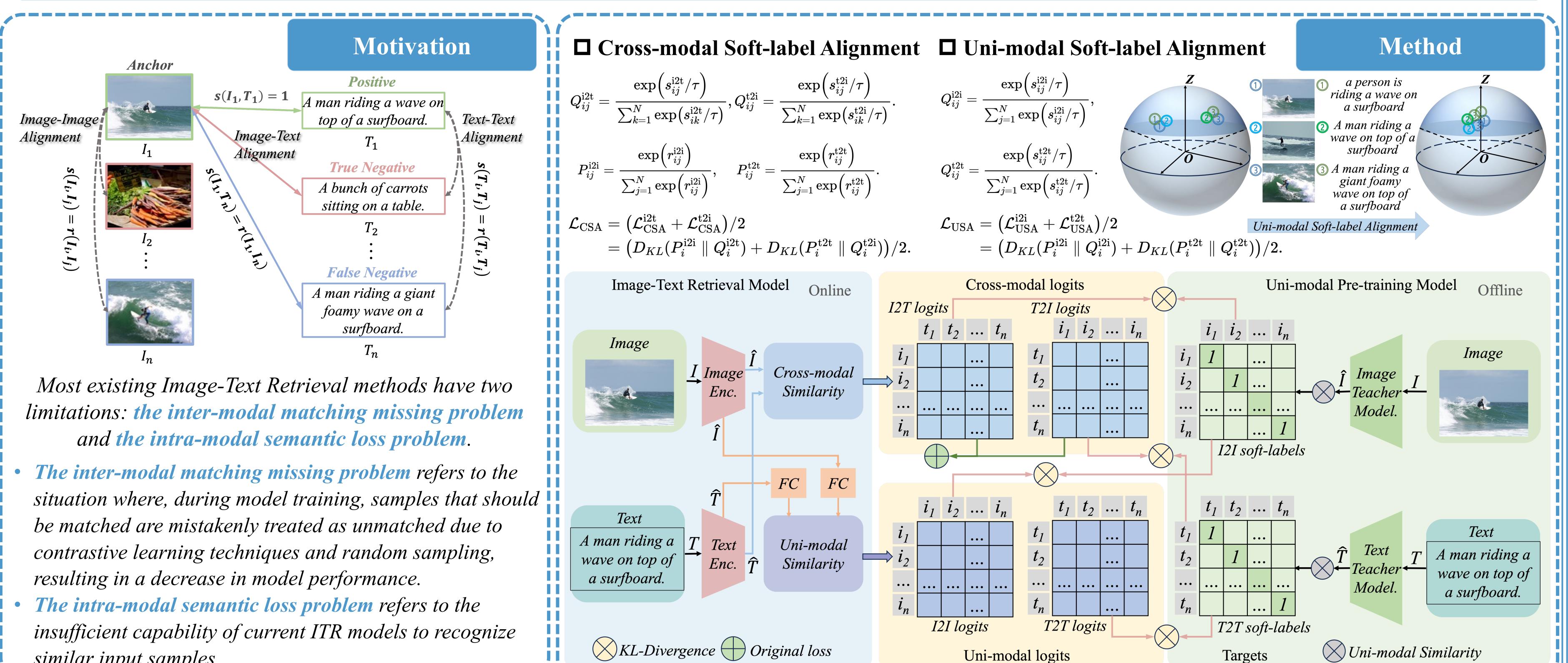


Cross-Modal and Uni-Modal Soft-Label Alignment for Image-Text Retrieval



Hailang Huang¹, Zhijie Nie^{1,2}, Ziqiao Wang³, Ziyu Shang⁴ ¹SKLSDE, School of Computer Science and Engineering, Beihang University, Beijing, China ²Shen Yuan Honors College, Beihang University, Beijing, China ³School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ⁴School of Computer Science and Engineering, Southeast University, Nanjing, China {huanghl, niezj}@act.buaa.edu.cn, zwang286@uottawa.ca, ziyus1999@seu.edu.cn

- similar input samples.

similar input samples.		Targets
Experiment	ECCV Caption (a). text-to-image Model Image-to-Text Text-to-Image MAP@R R-P R@1 mAP@R R-P R@1 A young man on a skateboard jumps a kateboard jumps a low to main in them in the main the main them in the main the ma	Conclusion
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+ CUSA 28.0 40.0 72.4 44.0 53.0 83.4 SAF ¹⁺ 26.6 38.5 69.6 43.1 52.0 83.8 + CUSA 27.4 39.8 71.4 44.4 53.6 84.6 SGRAF ¹⁺ 28.1 39.8 72.3 43.7 52.5 84.4 + CUSA 29.5 41.4 74.5 46.4 55.1 85.7 Dual-Encoder, pre-training CLIP _{vit-E124} 28.5 39.4 72.5 54.2 87.2 CLIP _{vit-E124} 28.5 39.4 72.5 54.2 87.2 83.0 2.4 Ablack and white photo of two birds walking in a grassy field. 1.4 black and white image of two birds walking in a grassy field. CLIP _{vit-E124} 33.6 44.1 80.9 47.6 55.8 88.2 1. Two fighter jets flying through a blue sky. 2. A black and white photo of two birds in the sand. 2. A black and white photo of two blue sky. 1. Two seagulls flying in a clear blue sky. 2.4 1. Two seagulls flying in a clear blue sky. 2. Hold miltitary plan does tricks against a bright blue sky. 1. Two seagulls flying in a clear blue sky. 1. Two seagulls flying in the light blue sky.	In this paper, we have proposed a novel method for image-text retrieval, called Cross-modal and Uni-modal Soft-label Alignment . Our method leverages a uni-modal pre-training model to provide soft-label supervision signals for the ITR model, and uses two alignment techniques, CSA and USA, to overcome false negatives and enhance similarity recognition between uni- modal samples. Our method is plug-and-play and can be easily applied to existing ITR models without changing their original architectures. We have conducted extensive experiments on various
ModelCUBSOPIn-ShopINaturalistAvg.ModelSTS12-16Avg.STS-BSICK-RAvg.Faster-RCNN, ResNet-101, without pre-trainingFaster-RCNN, ResNet-101, without pre-trainingFaster-RCNN, ResNet-101, without pre-trainingSGR \dagger^1 31.151.919.533.734.1SGR \dagger^1 51.858.162.754.3+ CUSA34.660.731.641.942.2+ CUSA55.965.264.958.5SAF \dagger^1 34.152.820.337.036.0SAF \dagger^1 53.964.563.556.8+ CUSA39.959.632.244.644.1+ CUSA54.866.364.557.8	(Image Retrieval, STS Benchmark) of the image-text	ITR models and datasets and demonstrated that our method can consistently improve the performance of image-text retrieval and achieve
Dual-Encoder, pre-training Dual-Encoder, pre-training CLIP _{ViT-B/32} 41.5 51.8 28.1 41.3 40.7 CLIP _{ViT-B/32} 67.4 76.2 72.9 69.4 + CUSA 49.6 56.5 34.1 45.6 46.5 + CUSA 71.6 78.3 75.8 73.2 CLIP _{VIT-L} (14@226m, 58.3 61.1 46.9 63.5 57.4 CLIP _{VIT-L} (14@226m, 69.8 78.6 75.5 71.9	• The case study results show that our method not only	new state-of-the-art results. Moreover, our method can also boost the uni-modal retrieval

