On *f*-Divergence Principled Domain Adaptation: An Improved Framework

Ziqiao Wang

School of Electrical Engineering and Computer Science University of Ottawa Ottawa, Canada zwang286@uottawa.ca

I. INTRODUCTION AND BACKGROUND

Unsupervised domain adaptation (UDA) plays a crucial role in addressing distribution shifts in machine learning. Recently, [1] proposed an f-divergence-based domain learning framework. However, their f-divergence-based discrepancy has an unnecessary absolute value function, thus leading to an overestimation of the domain discrepancy. In this work, we introduce a new measure, f-domain discrepancy (f-DD), and give a novel target error bound for UDA.

a) UDA Setup: Let \mathcal{X} and \mathcal{Y} be the input space and the label space. Let $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$ be the hypothesis space. Consider a single-source UDA setting, where μ and ν are two unknown distributions on $\mathcal{X} \times \mathcal{Y}$, characterizing respectively the source and the target domain. Let $S = \{(X_i, Y_i)\}_{i=1}^n \sim \mu^{\otimes n}$ be a labeled source-domain sample and $\mathcal{T} = \{X_j\}_{j=1}^m \sim \nu^{\otimes m}$ be an unlabelled target-domain sample. We use $\hat{\mu}$ and $\hat{\nu}$ to denote the empirical distributions on \mathcal{X} corresponding to S and T, respectively. The objective of UDA is to find a hypothesis $h \in \mathcal{H}$ based on \mathcal{S} and \mathcal{T} that "works well" on the target domain. Let ℓ : $\mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+_0$ be a symmetric loss. The target error for each $h \in \mathcal{H}$ is defined as $R_{\nu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \nu} [\ell(h(X), Y)],$ and the error in the source domain, $R_{\mu}(h)$, is defined in the same way. Since μ and ν are unknown to the learner, one often uses recourse to the empirical risk in the source domain, which, for a given S, is defined as $R_{\hat{\mu}}(h) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), Y_i)$. We will simply use $\ell(h, h')$ to represent $\ell(h(x), h'(x))$.

b) Background on f-divergence: The family of f-divergence is defined as follows.

Definition I.1. Let *P* and *Q* be two distributions on Θ . Let $\phi : \mathbb{R}_+ \to \mathbb{R}$ be a convex function with $\phi(1) = 0$. If $P \ll Q$, then *f*-divergence is defined as $D_{\phi}(P||Q) \triangleq \mathbb{E}_Q\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where $\frac{dP}{dQ}$ is a Radon-Nikodym derivative.

The f-divergence family contains many popular divergences, such as KL divergence. Recently, [2] introduces a variational representation for f-divergence, as given below.

Lemma I.1. Let ϕ^* be the convex conjugate of ϕ , and $\mathcal{G} = \{g : \Theta \to \operatorname{dom}(\phi^*)\}$. Then

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \inf_{\alpha \in \mathbb{R}} \{ \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta) + \alpha) \right] - \alpha \}.$$

Yongyi Mao

School of Electrical Engineering and Computer Science University of Ottawa Ottawa, Canada ymao@uottawa.ca

II. MAIN RESULTS

Let $I^h_{\phi,\mu}(t\ell \circ h') = \inf_{\alpha} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h,h') + \alpha)\right] - \alpha$. We now introduce a new discrepancy measure based on Lemma I.1.

Definition II.1 (*f*-DD). For a given $h \in \mathcal{H}$,

$$\mathbf{D}_{\phi}^{h,\mathcal{H}}(\nu||\mu) \triangleq \sup_{h' \in \mathcal{H}, t \in \mathbb{R}} \mathbb{E}_{\nu} \left[t\ell(h,h') \right] - I_{\phi,\mu}^{h}(t\ell \circ h').$$

We are in a position to give the target error bound.

Theorem II.1. Let $\psi(x) \triangleq \phi(x+1)$, and ψ^* is its convex conjugate. Define $K_{h',\mu}(t) \triangleq \inf_{\alpha} \mathbb{E}_{\mu} [\psi^*(t \cdot \ell(h, h') + \alpha)]$. Let $K_{\mu}(t) = \sup_{h' \in \mathcal{H}} K_{h',\mu}(t)$. Then, for any $h \in \mathcal{H}$,

$$R_{\nu}(h) \le R_{\mu}(h) + \inf_{t \ge 0} \frac{\mathcal{D}_{\phi}^{h,\mathcal{H}}(\nu||\mu) + K_{\mu}(t)}{t} + \lambda^{*}, \quad (1)$$

where $\lambda^* = \min_{h^* \in \mathcal{H}} R_{\mu}(h^*) + R_{\nu}(h^*).$

Given additional information about ϕ , $K_{\mu}(t)$ can be further upper bounded using a more expressive form, allowing for the determination of the optimal t. For instance, considering the KL case (denoted as $D_{KL}^{h,\mathcal{H}}$), the second term in Eq. (1) can be upper bounded by $\sqrt{2D_{KL}^{h,\mathcal{H}}(\nu||\mu)}$. Consequently, Theorem II.1 can recover previous KL-based results in [3].

TABLE I ACCURACY (%) ON UDA CLASSIFICATION TASKS			
Method	Office-31	Office-Home	Digits
[1]	89.5	68.5	96.3
Ours	90.1	70.2	97.1

Theorem II.1 suggests that by jointly minimizing the error of the source domain and the f-DD between two domains, a reduction in target error can be achieved. As such, we integrate a UDA algorithm similar to that proposed in [1], and our algorithm outperforms [1] as presented in Table I.

REFERENCES

- D. Acuna, G. Zhang, M. T. Law, and S. Fidler, "f-domain adversarial learning: Theory and algorithms," in *International Conference on Machine Learning*. PMLR, 2021, pp. 66–75.
- [2] R. Agrawal and T. Horel, "Optimal bounds between f-divergences and integral probability metrics," in *International Conference on Machine Learning*. PMLR, 2020, pp. 115–124.
- [3] Z. Wang and Y. Mao, "Information-theoretic analysis of unsupervised domain adaptation," in *International Conference on Learning Representations*, 2023.