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I. INTRODUCTION AND BACKGROUND

Unsupervised domain adaptation (UDA) plays a crucial
role in addressing distribution shifts in machine learning.
Recently, [1] proposed an f -divergence-based domain learning
framework. However, their f -divergence-based discrepancy
has an unnecessary absolute value function, thus leading to
an overestimation of the domain discrepancy. In this work,
we introduce a new measure, f -domain discrepancy (f -DD),
and give a novel target error bound for UDA.

a) UDA Setup: Let X and Y be the input space and the
label space. Let H = {h : X → Y} be the hypothesis space.
Consider a single-source UDA setting, where µ and ν are two
unknown distributions on X × Y , characterizing respectively
the source and the target domain. Let S = {(Xi, Yi)}ni=1∼µ⊗n

be a labeled source-domain sample and T = {Xj}mj=1∼ν⊗m

be an unlabelled target-domain sample. We use µ̂ and ν̂
to denote the empirical distributions on X corresponding to
S and T , respectively. The objective of UDA is to find a
hypothesis h ∈ H based on S and T that “works well”
on the target domain. Let ℓ : Y × Y → R+

0 be a sym-
metric loss. The target error for each h ∈ H is defined as
Rν(h) ≜ E(X,Y )∼ν [ℓ(h(X), Y )], and the error in the source
domain, Rµ(h), is defined in the same way. Since µ and ν
are unknown to the learner, one often uses recourse to the
empirical risk in the source domain, which, for a given S, is
defined as Rµ̂(h) ≜ 1

n

∑n
i=1 ℓ(h(Xi), Yi). We will simply use

ℓ(h, h′) to represent ℓ(h(x), h′(x)).
b) Background on f -divergence: The family of f -

divergence is defined as follows.

Definition I.1. Let P and Q be two distributions on Θ. Let
ϕ : R+ → R be a convex function with ϕ(1) = 0. If P ≪ Q,
then f -divergence is defined as Dϕ(P ||Q) ≜ EQ

[
ϕ
(

dP
dQ

)]
,

where dP
dQ is a Radon-Nikodym derivative.

The f -divergence family contains many popular diver-
gences, such as KL divergence. Recently, [2] introduces a
variational representation for f -divergence, as given below.

Lemma I.1. Let ϕ∗ be the convex conjugate of ϕ, and G=
{g : Θ → dom(ϕ∗)}. Then

Dϕ(P ||Q)=sup
g∈G

Eθ∼P [g(θ)]− inf
α∈R

{Eθ∼Q [ϕ∗(g(θ)+α)]−α}.

II. MAIN RESULTS

Let Ihϕ,µ(tℓ◦h′)=infα Eµ [ϕ
∗(tℓ(h, h′) + α)]−α. We now

introduce a new discrepancy measure based on Lemma I.1.

Definition II.1 (f -DD). For a given h ∈ H,

Dh,H
ϕ (ν||µ) ≜ sup

h′∈H,t∈R
Eν [tℓ(h, h

′)]− Ihϕ,µ(tℓ ◦ h′).

We are in a position to give the target error bound.

Theorem II.1. Let ψ(x) ≜ ϕ(x + 1), and ψ∗ is its convex
conjugate. Define Kh′,µ(t) ≜ infα Eµ [ψ

∗(t · ℓ(h, h′) + α)].
Let Kµ(t) = suph′∈HKh′,µ(t). Then, for any h ∈ H,

Rν(h) ≤ Rµ(h) + inf
t≥0

Dh,H
ϕ (ν||µ) +Kµ(t)

t
+ λ∗, (1)

where λ∗ = minh∗∈HRµ(h
∗) +Rν(h

∗).

Given additional information about ϕ, Kµ(t) can be further
upper bounded using a more expressive form, allowing for the
determination of the optimal t. For instance, considering the
KL case (denoted as Dh,H

KL ), the second term in Eq. (1) can

be upper bounded by
√
2Dh,H

KL (ν||µ). Consequently, Theorem
II.1 can recover previous KL-based results in [3].

TABLE I
ACCURACY (%) ON UDA CLASSIFICATION TASKS

Method Office-31 Office-Home Digits

[1] 89.5 68.5 96.3
Ours 90.1 70.2 97.1

Theorem II.1 suggests that by jointly minimizing the error
of the source domain and the f -DD between two domains, a
reduction in target error can be achieved. As such, we integrate
a UDA algorithm similar to that proposed in [1], and our
algorithm outperforms [1] as presented in Table I.
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