On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications

Motivation and Contribution

Motivations:

- Algorithm & Distribution-dependent bound.
- Does the flatness have impact on the generalization?

Key Contributions:

- We present new information-theoretic generalization bounds for models (e.g., linear and two-layer ReLU neural networks) trained with SGD.
- Experimental study provides some insights on the SGD training of neural networks (e.g., a double descent phenomenon of gradient dispersion).
- We also design a simple regularization scheme, Gaussian model perturbation (GMP), which is comparably to the current SOTA.

Theoretical Results

Decomposition of the expected generalization error (Neu et al. $\left|\operatorname{gen}(\mu, P_{W_T|S})\right| = \left|\operatorname{gen}(\mu, P_{\widetilde{W}_T|S}) + \mathbb{E}\left|L_{\mu}(W_T)\right|\right|$ **Theorem 1** The generalization error of SGD is upper bounded by $\sqrt{\frac{R^2 d}{n}} \sum_{t=1}^{T} \mathbb{E}\left[\log\left(\frac{\lambda_t^2}{d\sigma_t^2} \mathbb{E}\left[||g(W_{t-1}, B_t) - \mathbb{E}\left[\nabla \ell(W_{t-1})\right]\right]\right]\right]} + \mathbb{E}\left[\nabla \ell(W_{t-1})\right]$ **Theorem 2** Let gradient dispersion $\mathbb{V}_t(w) \triangleq \mathbb{E}_S ||g(w, B_t)|$ $|\operatorname{gen}(\mu, P_{W_T|S})| \leq \sqrt{\frac{R^2 d}{n} \sum_{t=1}^T \log\left(\frac{\lambda_t^2}{d\sigma_t^2} \mathbb{E}\left[\mathbb{V}_t(W_t)\right]\right)}$ trajectory term Assume $L_{\mu}(w_T) \leq \mathbb{E}_{\Delta_T} \left[L_{\mu}(w_T + \Delta_T) \right]$ and σ_t^2 is independent of t. Then the optimal bound: $\operatorname{gen}(\mu, P_{W_T|S}) \leq \frac{3}{2} \left(\sum_{t=1}^{T} \frac{R^2 \lambda_t^2 T}{n} \mathbb{E}\left[\mathbb{V}_t(W_{t-1}) \right] \mathbb{E}\left[\operatorname{Tr}\left(\mathbf{H}_{W_T}(Z) \right) \right] \right)^3$ **Compared with the bound in Neu et al. (2021): Application: Linear and Two-Layer ReLU Networks** • $Z = (X, Y); \ell(W, Z) = \frac{1}{2}(Y - f(W, X))^2$ **Theorem 3 (Linear Networks)** Upper bound: (a) $\sigma = 1e^{-2}$ (b) $\sigma = 1e^{-4}$ $3\left(\sum_{t=1}^{T} \frac{R^2 \lambda_t^2 T}{4n} \mathbb{E}\left[\ell(W_{t-1}, Z)\right]\right)^3.$

Ziqiao Wang

Problem Formulation

Expected Generalization Error:

• $S = \{Z_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} \mu; \mathcal{W} \subseteq \mathbb{R}^d; \ell: \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$ • Learning algorithm $\mathcal{A}: \mathcal{Z}^n \to \mathcal{W}$ • $L_{\mu}(w) \triangleq \mathbb{E}_{Z \sim \mu}[\ell(w, Z)]; L_{S}(w) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell(w, Z_{i})$ • $\operatorname{gen}(\mu, P_{W|S}) \triangleq \mathbb{E}_{W,S}[L_{\mu}(W) - L_{S}(W)]$ **SGD updates:** $W_t \triangleq W_{t-1} - \lambda_t g(W_{t-1}, B_t)$ where $g(w, B_t) \triangleq 1/b \sum_{z \in B_t} \nabla_w \ell(w, z)$

Auxiliary Weight Process (only in the analysis): • $W_t \triangleq W_{t-1} - \lambda_t g(W_{t-1}, B_t) + N_t$, for t>0, $N_t \sim \mathcal{N}(0, \sigma_t^2 \mathbf{I}_d)$

• Let $\widetilde{W}_0 \triangleq W_0$ and $\Delta_t = \sum_{\tau=1}^t N_\tau \Longrightarrow \widetilde{W}_t =$ $W_t + \Delta_t.$

$$(2021)): - L_{\mu}(\widetilde{W}_{T}) \Big] + \mathbb{E} \Big[L_{S}(\widetilde{W}_{T}) - L_{S}(W_{T}) \Big] \Big| .$$

$$[-1, Z)]||^2] + 1 \bigg) \bigg] + |\mathbb{E}[\gamma(W_T, S) - \gamma(W_T, S')]|.$$

$$\underbrace{(t_{t-1}) - \mathbb{E}_{W,Z} \nabla_{w} \ell(W,Z) ||_{2}^{2} . Then }_{flatness term}$$

$$\underbrace{(t_{t-1}) + 1}_{flatness term} + \underbrace{|\mathbb{E} \left[\gamma(W_{T},S) - \gamma(W_{T},S') \right]|}_{flatness term} .$$

$$(1)$$

Theorem 4 (Two-Layer ReLU Networks) Upper bound: 1 $3\left(\sum_{r=1}^{m} \mathbb{E}\left[\frac{\mathbb{I}_{r,i,T}}{m}\right] \sum_{t=1}^{T} \frac{R^2 \lambda_t^2 T}{4n} \mathbb{E}\left[\sum_{r=1}^{m} \frac{\mathbb{I}_{r,i,t}}{m} \ell(W_{t-1}, Z)\right]\right)^{\overline{3}},$ where $\mathbb{I}_{r,i,t} = \mathbb{I}\{W_{t-1,r}^T X_i \ge 0\}.$

Sparsely activated ReLU networks are expected to generalize better.

(2)

We hop

min w

Algorith Require: λ , N while Up 6: Up

Yongyi Mao

Experimental Results

Bound Verification of Thm 2: Estimated bound and empirical generalization gap ("gap") as functions of network width ((a) and (b)) and label noise level ((c) and (d)).

(a) MLP on MNIST

(b) AlexNet on CIFAR10

Epoch-wise Double Descent of Gradient Dispersion:

• \mathbb{V} rapidly descends; Both training acc. and test acc. increase; \implies "Generalization" • \mathbb{V} starts increasing until it reaches a peak value; Train acc. and Test acc. diverge; \implies "Memorization" • V descends again; Training and testing curves reach their respective maximum and minimum.

Implication: Dynamic Gradient Clipping

• Check if $||g(W_t, B_t)||_2 > ||g(W_{t-K}, B_{t-K})||_2$ (i.e., the model is expected to have entered the "memorization" regime)

• If so, reduce the norm of the current gradient $g(W_t, B_t)$ to α fraction of $||g(W_{t-K}, B_{t-K})||_2$

• Effectiveness is best demonstrated when labels contain noise.

Implication: GMP

Top-1 classification acc.(%) of VGG16			
Method	SVHN	CIFAR-10	CIFAR-100
ERM	$96.86 {\pm} 0.060$	93.68±0.193	$72.16 {\pm} 0.297$
Dropout	$97.04 {\pm} 0.049$	93.78±0.147	72.28 ± 0.337
L. S.	$96.93 {\pm} 0.070$	93.71±0.158	72.51 ± 0.179
Flooding	$96.85 {\pm} 0.085$	$93.74{\pm}0.145$	72.07 ± 0.271
MixUp	96.91±0.057	94.52±0.112	73.19 ± 0.254
Adv. Tr.	97.06 ± 0.091	93.51±0.130	$70.88 {\pm} 0.145$
AMP	97.27±0.015	94.35±0.147	$74.40{\pm}0.168$
\mathbf{GMP}^3	97.18 ± 0.057	94.33±0.094	74.45 ± 0.256
\mathbf{GMP}^{10}	$97.09 {\pm} 0.068$	94.45 ± 0.158	$75.09{\pm}0.285$
	Top Method ERM Dropout L. S. Flooding MixUp Adv. Tr. AMP GMP ³ GMP ¹⁰	Top-1 classificationMethodSVHNERM96.86 \pm 0.060Dropout97.04 \pm 0.049L. S.96.93 \pm 0.070Flooding96.85 \pm 0.085MixUp96.91 \pm 0.057Adv. Tr.97.06 \pm 0.091AMP97.27 \pm 0.015GMP ³ 97.18 \pm 0.057GMP ¹⁰ 97.09 \pm 0.068	Top-1 classification acc.(%) of VMethodSVHNCIFAR-10ERM96.86 \pm 0.06093.68 \pm 0.193Dropout97.04 \pm 0.04993.78 \pm 0.147L. S.96.93 \pm 0.07093.71 \pm 0.158Flooding96.85 \pm 0.08593.74 \pm 0.145MixUp96.91 \pm 0.05794.52 \pm 0.112Adv. Tr.97.06 \pm 0.09193.51 \pm 0.130AMP97.27 \pm 0.01594.35 \pm 0.147GMP ³ 97.18 \pm 0.05794.33 \pm 0.094GMP ¹⁰ 97.09 \pm 0.06894.45 \pm 0.158

⁽b) noise=0.4 (MNIST)