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Motivation and Contribution
Motivations:
• Algorithm & Distribution-dependent bound.
• Does the flatness have impact on the generalization?

Key Contributions:
• We present new information-theoretic generaliza-

tion bounds for models (e.g., linear and two-layer
ReLU neural networks) trained with SGD.

• Experimental study provides some insights on the
SGD training of neural networks (e.g., a double
descent phenomenon of gradient dispersion).

• We also design a simple regularization scheme,
Gaussian model perturbation (GMP), which is
comparably to the current SOTA.

Problem Formulation
Expected Generalization Error:
• S = {Zi}ni=1

iid∼ µ;W ⊆ Rd; ` :W ×Z → R+

• Learning algorithm A : Zn →W
• Lµ(w) , EZ∼µ[`(w,Z)]; LS(w) , 1

n

∑n
i=1 `(w,Zi)

• gen(µ, PW |S) , EW,S [Lµ(W )− LS(W )]

SGD updates: Wt , Wt−1 − λtg(Wt−1, Bt) where
g(w,Bt) , 1/b

∑
z∈Bt

∇w`(w, z)

Auxiliary Weight Process (only in the analysis):
• W̃t , W̃t−1 − λtg(Wt−1, Bt) + Nt, for t>0,
Nt ∼ N (0, σ2

t Id)

• Let W̃0 , W0 and ∆t =
∑t
τ=1Nτ=⇒ W̃t =

Wt + ∆t.

Experimental Results
Bound Verification of Thm 2: Estimated bound and empirical generalization gap (“gap”) as functions of network
width ((a) and (b)) and label noise level ((c) and (d)).

Epoch-wise Double Descent of Gradient Dispersion:
• V rapidly descends; Both training acc. and test acc. increase; =⇒ “Generalization”
• V starts increasing until it reaches a peak value; Train acc. and Test acc. diverge; =⇒ “Memorization”
• V descends again; Training and testing curves reach their respective maximum and minimum.

Implication: Dynamic Gradient Clipping

• Check if ||g(Wt, Bt)||2 > ||g(Wt−K , Bt−K)||2 (i.e., the model is ex-
pected to have entered the “memorization” regime)

• If so, reduce the norm of the current gradient g(Wt, Bt) to α fraction of
||g(Wt−K , Bt−K)||2

• Effectiveness is best demonstrated when labels contain noise.

Implication: GMP
We hope the empirical risk surface at w∗ is flat,

min
w

1

b

∑
z∈B

(
(1− ρ)`(w, z) + ρ

1

k

k∑
i=1

(`(w + δi, z))

)
.

Top-1 classification acc.(%) of VGG16
Method SVHN CIFAR-10 CIFAR-100

ERM 96.86±0.060 93.68±0.193 72.16±0.297
Dropout 97.04±0.049 93.78±0.147 72.28±0.337
L. S. 96.93±0.070 93.71±0.158 72.51±0.179
Flooding 96.85±0.085 93.74±0.145 72.07±0.271
MixUp 96.91±0.057 94.52±0.112 73.19±0.254
Adv. Tr. 97.06±0.091 93.51±0.130 70.88±0.145
AMP 97.27±0.015 94.35±0.147 74.40±0.168
GMP3 97.18±0.057 94.33±0.094 74.45±0.256
GMP10 97.09±0.068 94.45±0.158 75.09±0.285

Theoretical Results
Decomposition of the expected generalization error (Neu et al. (2021)):∣∣gen(µ, PWT |S)

∣∣ =
∣∣∣gen(µ, P

W̃T |S) + E
[
Lµ(WT )− Lµ(W̃T )

]
+ E

[
LS(W̃T )− LS(WT )

]∣∣∣ .
Theorem 1 The generalization error of SGD is upper bounded by√√√√R2d

n

T∑
t=1

E
[
log

(
λ2
t

dσ2
t

E [||g(Wt−1, Bt)− E [∇`(Wt−1, Z)]||2] + 1

)]
+ |E [γ(WT , S)− γ(WT , S

′)]| .

Theorem 2 Let gradient dispersion Vt(w) , ES ||g(w,Bt)− EW,Z∇w`(W,Z)||22 . Then

|gen(µ, PWT |S)| ≤

√√√√R2d

n

T∑
t=1

log

(
λ2
t

dσ2
t

E [Vt(Wt−1)] + 1

)
︸ ︷︷ ︸

trajectory term

+ |E [γ(WT , S)− γ(WT , S
′)]|︸ ︷︷ ︸

flatness term

. (1)

Assume Lµ(wT ) ≤ E∆T
[Lµ(wT + ∆T )] and σ2

t is independent of t. Then the optimal bound:

gen(µ, PWT |S) ≤ 3

2

(
T∑
t=1

R2λ2
tT

n
E [Vt(Wt−1)]E [Tr (HWT

(Z))]

) 1
3

(2)

Compared with the bound in Neu et al. (2021):
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(d) Vt and Vt

Thm 2 Neu et al. (2021) Vt Vt

Application: Linear and Two-Layer ReLU Networks
• Z = (X,Y ); `(W,Z) = 1

2 (Y − f(W,X))2

Theorem 3 (Linear Networks) Upper bound:

3

(
T∑
t=1

R2λ2
tT

4n
E [`(Wt−1, Z)]

) 1
3

.

Theorem 4 (Two-Layer ReLU Networks) Upper bound:

3

(
m∑
r=1

E
[
Ir,i,T
m

] T∑
t=1

R2λ2
tT

4n
E

[
m∑
r=1

Ir,i,t
m

`(Wt−1, Z)

]) 1
3

,

where Ir,i,t = I{WT
t−1,rXi ≥ 0}.

Sparsely activated ReLU networks are expected to gen-
eralize better.


