Sample-Conditioned Hypothesis Stability Sharpens InformationTheoretic Generalization Bounds

Ziqiao Wang ${ }^{1}$ Yongyi Mao ${ }^{1}$

Background

Key Observation from Algorithmic Stability

sup $_{W, W^{-1}, Z} \mid$ Loss of $(W, Z)-$ Loss of $\left(W^{-i}, Z\right) \mid \leq$ Unif. Stability Param.
$\mathbb{E}_{W, W-1}\left[\right.$ sup Z, Loss of $(W, Z)-$ Loss of $\left.\left(W^{-i}, Z\right)\right] \leq$ SCH Stability Param.
where Z can be either Z_{i} or $Z_{\text {: }}^{\text {: }}$
\Downarrow
Some terminologies
Evaluated Data $Z \in\left(Z_{i}, Z_{i}^{\prime}\right)$;

- (Neighboring) Hypothesis pair: $\left(W, W^{-i}\right)$
- Membership: e.g. $\mathbb{1}\left\{\right.$ Evaluated Data $\left.=Z_{i}\right\}$

Main Theorem (informal.)

If \mathcal{A} is stable, then
Gen. Err. \precsim Stability Param $\times \underbrace{\sqrt{I \text { (Evaluated Data; Membership|Hypothesis Pair) }}}$

\Downarrow

Generalization, in this context, pertains to the ability to infer, given $\left(W, W^{-i}\right)$ and Evaluated Data, whether the Evaluated Data corresponds to Z_{i} or Z_{i}^{\prime}.

More Technical? All about Bounding CGF
Recall Donsker-Varadhan (DV) lemma:

$$
\text { Gen. Err. } \leq \inf _{t>0} \frac{\text { IOMI or CMI }+\mathrm{CGF}}{\mathrm{t}}
$$

Let f_{DV} be so-called DV auxiliary function, then
$\mathrm{CGF}=\log \mathbb{E}\left[\exp \left(t \cdot f_{\mathrm{DV}}\right)\right] \leq$ Some Concentration Bound.

- Typical choices of $f_{D V}$ in previous works
$f_{\mathrm{DV}}=\left\{\begin{array}{l}\text { Single Loss of }\left(w, z^{\prime}\right) \\ \text { Loss of }\left(w, z^{\prime}\right)-\text { Expected Loss of }\left(w, Z^{\prime}\right) \\ \text { Loss of Data } 1-\text { Loss of Data } 2 \text { for the same } w\end{array}\right.$
where in the last choose, Data 1 is chosen uniformly from a data pair, e.g, $\left(Z^{0}, Z^{1}\right)$, decided by a $U \sim \operatorname{Bern}(1 / 2) \Longrightarrow$ Data $1=Z^{U}$, Data $2=Z^{1-U}$. - In this paper:
$f_{\mathrm{DV}}=\left\{\begin{array}{l}\text { Loss of }\left(w, z^{\prime}\right)-\text { Conditional Expected Loss of }\left(W^{-i}, z^{\prime}\right) \\ \text { Loss of Hypothesis } 1-\text { Loss of Hypothesis } 2 \text { for the same } z\end{array}\right.$,
where in the last choose, Hypothesis 1 is chosen uniformly from a neighboring hypothesis pair, e.g., $\left(W^{0}, W^{1}\right)$, decided by a $U \sim \operatorname{Bern}(1 / 2)$ \Longrightarrow Hypothesis $1=W^{U}$, Hypothesis $2=W^{1-U}$

Application: Stochastic Covex Optimization Problems
SCO setting: Hypothesis set is convex; Objective function is convex.

- In convex-Lipschitz-bounded (CLB) counterexamples (which is a subset of SCO problems) given by [2]

$$
\text { Gen. Err. } \leq \mathcal{O}(1 / \sqrt{n})
$$

- Previous IOMI or CMI bound: $\mathcal{O}\left(\alpha \sqrt{\frac{\text { IOMI or CMI }}{n}}\right)$, where α usually satisfies that $\mathrm{CGF} \leq \frac{t^{2} \alpha^{2}}{2}$.
e.g., α can be a SubGaussian variance proxy or

- [2] shows that
$\alpha=\mathcal{O}(1)(=$ Lip. Param. \times Diam. of Hypothesis Domain)
and Previous IOMI \geq Previous CMI $=\mathcal{O}(n)$.
$\Longrightarrow \mathcal{O}\left(\alpha \sqrt{\frac{\text { IOMI or CMI }}{n}}\right) \in \mathcal{O}(1) \Longrightarrow$ Fail to explain the learnability (:).

> - Our new CMI bound:

Stability Param. $=\mathcal{O}(1 / \sqrt{n})$
and New CMI $=\mathcal{O}(1)$
\Longrightarrow New CMI Bound $\in \mathcal{O}(1 / \sqrt{n}) \Longrightarrow$ Can explain the learnability $\underbrace{}_{\bullet}$!

- Wait, Stability Param. itself can serve as a generalization bound, why do we need IOMI or CMI \because ?
There is another CLB example in our paper where Stability Param. $=\mathcal{O}(1 / \sqrt{n})$ but Gen. Err. \leq New CMI Bound $=\mathcal{O}(1 / n)$ Check it

Concluding Remarks

Take-Home Message: Selecting the Suitable DV Auxiliary Function for Varied

 Problem Contexts.There are additional choices for SCH stability, allowing us to establish connections with the Bernstein condition or achieve faster-rate bounds in certain cases. Our new CMI maintains the same expressiveness as the original CMI and preserves its boundedness property. The comparison between the new CMI and the original CMI in a broader context remains an open question.

References

[^0]
[^0]: 11) Olivier Bousquy
 $499526,2002$.
 [2] Mahdi Haghifam, Borij Rodríguez-Gávez, Ragnar Thobaben, Mikeel Skoglund, Daniel M Roy, and Gintare Karolina Dziugaite. Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization. In International Conference on Algorithmic Learning Theory, pages 663-706. PMLR, 2023. [3] Fredrik Hellström and Giuseppe Durisi. Fast-rate loss bounds via conditional information measures with applications
 to neural networks. In 2021 IEEE International Symposium on Information Theory (ISIT), 2021. Themas Steinke and Lydia Zakynthinout. Reasoning about generalization via conditional mutual
 12) Thomas Steinke and Lydia Zakynthinou. Rea
 Conference on Learning Theory. PMLR, 2020 .
 13) Aolin Xu and Maxim Raginsky. Information-theoretic anal
 Advances in Neural Information Processing Systems, 2017 .

 Advances in Neural Information Processing Systems, 2017 ands of generalization capability of learning algorithms
 Buin
 quadratic gaussian problem. 2023 LEEE International Symposium on Information Theory (ISIT), 2023

