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Background

= Learning algorithm A : S — W ie. mapping a training sample to a hypothesis.
= Gen. Err. = E [Test Err. — Train Err.] < Gen. Bound.

= Information-theoretic (I'T) bounds belong to the class of Gen. Bound.

Limitations of IT Generalization bounds

= Original input-output mutual information (IOMI) (e.g., I(W;.S) in [5]) based
bound can — oo (X N
—> solved by conditional mutual information (CMI) I(W;U|Z) in |4]| &.

= Slow convergence rate, e.g., O(1/y/n) & = mitigated by |3, 6] and so on &,
= Non-vanishing in Stochastic Convex Optimization (SCO) problems [2] G

Contributions

Our contribution: Incorporating stability-based analysis into I'T" framework which
improves both stability-based bounds and I'T" bounds.

Key Observation from Algorithmic Stability

* Given S = {Z;}'; and Z.
A
Dyeeis Loy oy =W 1= Loss of (W, Z2)
Ziyeooy 200000 Dy AW = Loss of (W_i,Z)
= A s Stable <= Loss of (W™, Z) is close to Loss of (W, Z).
= Uniform Stability [1]:
supyyyyi z |Loss of (W, Z) — Loss of (W™, Z)| < Unif. Stability Param.
= Sample-Conditioned Hypothesis (SCH) Stability in this paper

Ey - [supy |Loss of (W, Z) — Loss of (W™, Z)|| < SCH Stability Param.,
where Z can be either Z; or Z;.

\

Some terminologies
= Evaluated Data Z € (Z;, Z));
= (Neighboring) Hypothesis pair: (W, W)
= Membership: e.g. 1{Evaluated Data = Z;}

|}
Main Theorem (informal.)

- Original “supersample” matrix construction in CMI [4]: SCO setting: Hypothesis set is convex; Objective function is convex.

[f A is stable, then

Gen. Err. 3 Stability Paramxy/I (Evaluated Data; Membership|Hypothesis Pair)

——
New CMI

Y
Generalization, in this context, pertains to the ability to infer, given (W, W ™") and

Evaluated Data, whether the Evaluated Data corresponds to Z; or Z;.
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Batam Batau Dat.a170 N - | Bataw = In convex-Lipschitz-bounded (CLB) counterexamples (which is a subset of SCO
Supersample: at.aQ’O afiaQ’l Mik—g]) | at.az’l Traget at.az’l i W pfObl@HlS) given by [2]
Datay, o Datay, 1 Data,o I Datay, o Gen. Err. < O(1/v/n).
CMI . .
—> [ (W U|Supersample): membership inference of train. set. - Previous IOMI or CMI bound: @ (&\/IOMI or CMI)7 where o usually satisfies
= Our “neighboring-hypothesis” matrix construction: 22
Data;, W B Data w w1 that CGE < =~ | |
Datas o W A W Datagy I A Wl W W2 e.g.. o can be a SubGaussian variance proxy or
f = s : —_————— | o= SUp |Loss of Data 1 — Loss of Data 2|.
Datamo B Datamo | n new neighboring hypotheses W W —"n Hypothesis, Data Pair
= The generalization game: * 2] shows that
Data o Datay _ Data;g; W Wi w-! Ir. Brry | Ts. Errg @ gg(l) ([fbpM?iralgm.ngarg.MoIf_H(ygpothesm Domain)
Datag,() Datagjl . | N B Datam I %% W_2 . Is. EH”Q IT. EI”I“Q all HEVIOUS — T IeVIous o (TL)
s s | : s | s s — 0 (Oz\/IOMI = CMI) € O(1) = Fail to explain the learnability &
Data,, o Datay, ; N Data,p, W W Ww-" Is. Err,, | 'Ir. Err, 0 M bound
_ Iy - 1 QT Par % = Our new ound:
= Gen. Err.= =) 7 E[Ts. Erry — Tr. Err) (< Stability Param. ) Stability Param. = O(1/+/m)
4 and New CMI= O(1).
- Our main theorem is asking: —> New CMI Bound € O(1/y/n) =>Can explain the learnability &)
Wi w-t Dataq g _ = Wait, Stability Param. itself can serve as a generalization bound, why do we need
Given wiw and Dataz, can you infer - 7 IOMI or CMI @ ¢
| o ’ | | There is another CLB example in our paper where Stability Param. = O(1/4/n)
W w-" Datay, g _ but Gen. Err. < New CMI Bound = O(1/n) & Check it!
More Technical? All about Bounding CGF Concluding Remarks
Recall Donsker-Varadhan (DV) lemma: . Take-Home Message: Selecting the Suitable DV Auxiliary Function for Varied
IOMI or CMI + CGF Problem Contexts.

Gen. Frr. < %1;15 " 2. There are additional choices for SCH stability, allowing us to establish connections

with the Bernstein condition or achieve faster-rate bounds in certain cases.
- Our new CMI maintains the same expressiveness as the original CMI and
CGF = logE[exp (t - fpv)] < Some Concentration Bound. preserves its boundedness property. The comparison between the new CMI and
the original CMI in a broader context remains an open question.

Let fpy be so-called DV auxiliary function, then 5

= Typical choices of fpy in previous works:
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