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Background

Learning algorithm A : S → W i.e. mapping a training sample to a hypothesis.
Gen. Err. = E [Test Err. − Train Err.] ≤ Gen. Bound.
Information-theoretic (IT) bounds belong to the class of Gen. Bound.

Limitations of IT Generalization bounds

Original input-output mutual information (IOMI) (e.g., I(W ; S) in [5]) based
bound can → ∞ .
=⇒ solved by conditional mutual information (CMI) I(W ; U |Z̃) in [4] .
Slow convergence rate, e.g., O(1/

√
n) =⇒ mitigated by [3, 6] and so on .

Non-vanishing in Stochastic Convex Optimization (SCO) problems [2] !

Contributions

Our contribution: Incorporating stability-based analysis into IT framework which
improves both stability-based bounds and IT bounds.

Key Observation fromAlgorithmic Stability

Given S = {Zi}n
i=1 and Z ′

i:
Z1, . . . , Zi, . . . , Zn

A→ W ⇒ Loss of (W, Z)
Z1, . . . , Z ′

i, . . . , Zn
A→ W −i ⇒ Loss of

(
W −i, Z

)
A is Stable ⇐⇒ Loss of

(
W −i, Z

)
is close to Loss of (W, Z).

Uniform Stability [1]:
supW,W −i,Z

∣∣Loss of (W, Z) − Loss of (W −i, Z)
∣∣ ≤ Unif. Stability Param.

Sample-Conditioned Hypothesis (SCH) Stability in this paper
EW,W −i

[
supZ

∣∣Loss of (W, Z) − Loss of (W −i, Z)
∣∣] ≤ SCH Stability Param.,

where Z can be either Zi or Z ′
i.

⇓
Some terminologies
Evaluated Data Z ∈ (Zi, Z ′

i);
(Neighboring) Hypothesis pair: (W, W −i)
Membership: e.g. 1{Evaluated Data = Zi}

⇓

Main Theorem (informal.)

If A is stable, then
Gen. Err.-Stability Param.×

√
I (Evaluated Data; Membership|Hypothesis Pair)︸ ︷︷ ︸

New CMI

⇓
Generalization, in this context, pertains to the ability to infer, given (W, W −i) and
Evaluated Data, whether the Evaluated Data corresponds to Zi or Z ′

i.

Novel Construction: “Neighboring-Hypothesis” Matrix

Original “supersample” matrix construction in CMI [4]:

Supersample=

Data1,0 Data1,1
Data2,0 Data2,1

... ...
Datan,0 Datan,1

Mask(U)=⇒

Data1,0 �
� Data2,1
... ...

Datan,0 �

Train. Set=⇒

Data1,0
Data2,1

...
Datan,0

A→ W

CMI=⇒ I(W ; U |Supersample): membership inference of train. set.
Our “neighboring-hypothesis” matrix construction:
Data1,0 �
Data2,0 �

... ...
Datan,0 �

A→ W ,

� Data1,1
Data2,0 �

... ...
Datan,0 �

A→ W −1, · · · , W −n︸ ︷︷ ︸
n new neighboring hypotheses

=⇒

W W −1

W W −2

... ...
W W −n

The generalization game:
Data1,0 Data1,1
Data2,0 Data2,1

... ...
Datan,0 Datan,1

+

� �
� �
... ...
� �

=⇒

Data1,0 �
� Data2,1
... ...

Datan,0 �

+

W W −1

W W −2

... ...
W W −n

=⇒

Tr. Err1 Ts. Err1
Ts. Err2 Tr. Err2

... ...
Ts. Errn Tr. Errn

=⇒ Gen. Err.= 1
n

∑n
i=1 E [Ts. Erri − Tr. Erri](≤ Stability Param.)

⇓
Our main theorem is asking:

Given

W W −1

W W −2

... ...
W W −n

and

Data1,0
Data2,1

...
Datan,0

, can you infer

� �
� �
... ...
� �

?

More Technical? All about Bounding CGF

Recall Donsker-Varadhan (DV) lemma:

Gen. Err. ≤ inf
t>0

IOMI or CMI + CGF
t

.

Let fDV be so-called DV auxiliary function, then
CGF = logE [exp (t · fDV)] ≤ Some Concentration Bound.

Typical choices of fDV in previous works:

fDV =


Single Loss of (w, z′)
Loss of (w, z′) − Expected Loss of (w, Z ′)
Loss of Data 1 − Loss of Data 2 for the same w

,

where in the last choose, Data 1 is chosen uniformly from a data pair, e.g.,
(Z0, Z1), decided by a U ∼ Bern(1/2) =⇒ Data 1 = ZU , Data 2=Z1−U .
In this paper:

fDV =
{

Loss of (w, z′) − Conditional Expected Loss of (W −i, z′)
Loss of Hypothesis 1 − Loss of Hypothesis 2 for the same z

,

where in the last choose, Hypothesis 1 is chosen uniformly from a neighboring
hypothesis pair, e.g., (W 0, W 1), decided by a U ∼ Bern(1/2)
=⇒ Hypothesis 1 = W U , Hypothesis 2=W 1−U .

Application: Stochastic Covex Optimization Problems

SCO setting: Hypothesis set is convex; Objective function is convex.

In convex-Lipschitz-bounded (CLB) counterexamples (which is a subset of SCO
problems) given by [2]:

Gen. Err. ≤ O(1/
√

n).

Previous IOMI or CMI bound: O
(

α
√

IOMI or CMI
n

)
, where α usually satisfies

that CGF ≤ t2α2

2 .
e.g., α can be a SubGaussian variance proxy or

α = sup
Hypothesis, Data Pair

|Loss of Data 1 − Loss of Data 2| .

[2] shows that
α = O(1) (=Lip. Param.×Diam. of Hypothesis Domain)
and Previous IOMI≥ Previous CMI= O(n).

=⇒ O
(

α
√

IOMI or CMI
n

)
∈ O(1) =⇒ Fail to explain the learnability .

Our new CMI bound:
Stability Param. = O(1/

√
n)

and New CMI= O(1).
=⇒ New CMI Bound ∈ O(1/

√
n) =⇒Can explain the learnability !

Wait, Stability Param. itself can serve as a generalization bound, why do we need
IOMI or CMI ?
There is another CLB example in our paper where Stability Param. = O(1/

√
n)

but Gen. Err. ≤ New CMI Bound = O(1/n) Check it!

Concluding Remarks

1. Take-Home Message: Selecting the Suitable DV Auxiliary Function for Varied
Problem Contexts.

2. There are additional choices for SCH stability, allowing us to establish connections
with the Bernstein condition or achieve faster-rate bounds in certain cases.

3. Our new CMI maintains the same expressiveness as the original CMI and
preserves its boundedness property. The comparison between the new CMI and
the original CMI in a broader context remains an open question.
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