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Theorem (informal): Localized KL-DD-based Bound

= Unknown distributions p and v
 Labeled source-domain sample § = { X;, Y;}",
= Unlabelled target-domain sample 7" = { X} ~v"™

» Goal: Efficiently transter ML models between related domains at low cost
— Find a hypothesis h € ‘H “works well” on v

Limitations of Previous f-Divergence-based DA Works

-

= Relying on a Weak Variational Representation (i.e. Eq. 1) (5
— (Cannot recover Donsker and Varadhans representation of KL divergence.

= Slow Rate of Sample Complexitiy Bound (R = c.o. O(\/lﬁ | \/%)

* Gap Between Theory and Algorithm =
—> e.g., Overestimation of the f-divergence in |1].

Main Contributions

* We design a novel f-divergence-based domain discrepancy measure, termed
f-DD. and derive an upper bound for the target error.

* To improve the convergence rate of our f-DD-based bound, we refine it using a
localization technique.

= Our f-DD outperforms previous f-divergence-based algorithms on three popular

UDA benchmarks.

Background on f-Divergence

* (f-Divergence) Let P and @ be two distributions on ©. Let ¢ : R, — R be a
convex function with ¢(1) = 0. If P < @), then

[ /dP\
D(P|Q) £ Eq qs(@) |

e.g.. Total variation, KL, ¥?, squared Hellinger, Jeffreys, Jensen-Shannon, etc.

= Variational Representation of f-divergence.
= Original Legendre Transformation:

D(PI|Q) = sup Eep [9(6)] — Eang [6(9(0))]. (1)

geg

= Reparameterization of g — g + «a (“Shift Transformation”) |2|

Do(PII) = supEo-r [9(6)] ~ inf {Es-q[¢"(0(6) + ) — o} (2)

Eq. (2) is point-wise “tighter” than Eq. (1)
g

» Example: Donsker and Varadhans (DV) representation of KL divergence:
¢(xr) = xlogx —x + 1, then ¢*(y) = e¥ — 1

« By Eq. (1)
it (PI[Q) = supEp [g(6)] — Bq [ —1]. (3)
= By Eq. (2)
Dy (PIIQ) = sup B [9(6)] ~ lox Eq B (4)

Eq. (4) recovers the DV representation of KL, Eq. (4) is pointwise tighter than Eq. (3) by
log(z) <o —1forx > 0.
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= Additional Notations

Triangle propert
= Loss function £: Y x Y — Rj. Assumptions : { 5° PIOPELLY

Bounded loss
« Target error: R, (h) = E(xy) [((R(X),Y)], Source error: R, (h) = Eix yy, [((R(X),Y)].
= We use £(h,h') to denote £(h(x), h'(x)), i.e. the disagreement of h and A’ on x.

= |1| defines:

N

o (pllv) = sup [E, [6(h, 1)) — B, [¢*(0(h, h))]]

h'eH

&

— Additional absolute value function added. @
= Theory (Target Error Bound):

Target Error < Source Error + f)gﬂ(u\ 'v) + Ideal Joint Error.

—> Absolute value function is necessary for establishing this bound

» f-Domain Adversarial Learning (f-DAL) Algorithm:

min Ry (h) + mlng (h, W] — By [6*(£(h, W)

_J/

-~

d(f,0;h)
— d(j1, 07 h) drops the absolute value function compared with f)g’H(tu)
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For any h € ‘H,,, w.h.p.

Target Error < Source Train Error + O(D/ " (0||1) + O (1/n + 1/m)
+ O (\/ +71)/n+\/1T/m ) (7, 71)-Related Terms + Complexity.

Small 7, = fast decaying rate (i.e. O (% + i)) > .

m

Algorithms and Experiments
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Figure 1. The y-axis is the estimated f-divergence and the x-axis is the # of iterations.
— f-DAL algorithm fails it the absolute value function is added.
= Qur f-DD:

Dg’%(VH/L) = sup E,[tl(h, 1) — inf E,[¢*(tl(h,h) + a) — a.
teR W eH acR

~ -~

—> Introducing the scaling parameter ¢ (i.e. “Affine Transformation”) &.

Theorem (informal): /-DD-based Bound

For any h € H,
wllp) + Ku(t)

Target Error < Source Error 4 int ¢ - Ideal Joint Error,

£>0
where K ,(t) is the upper bound for the “general CGF” for p

= Ideal joint error can be mingey R, (h*) + R, (h*) [3] or mm{R (f), Ru(fo)} 1]

/ hc I Minimizing classification err(x
of labeled source data
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Figure 2. Overview of f-DD.

= Three specific discrepancy measures:

» KL-DD, x*-DD, the weighted Jeffereys-DD: v Dir.(2]|2) + Dk (D] &)

= Objective Function:

Bounded ¢ — Unbounded /¢ (Optimizing over ¢ may not be necessary) &7

mhin Ru(h) + max {Eﬁ [@(h, h’)} — inf

[qﬁ*(é(h, )+ a) — oz} } |

Table 1. Accuracy (%) on UDA Classification Tasks

Method Office-31 Otfhice-Home Digits

f-DAL |1] 89.5 68.5 96.3

Ours (KL-DD) 89.8 69.4 96.9

Ours (x*-DD) 89.7 69.2 96.4

Ours (Jeffereys-DD)  90.1 70.2 97.1
Key Takeways

= [f ¢ is twice differentiable and ¢" is monotone, then 1nft>0

e.g., ¢"(1) =1 for KL recovers |4, Theorem 4.2|.
= Sample complexity bound: w.h.p.,

DL (v||p) < DS7(9]]f1) + Complexitiy Terms + O (1/v/n + 1/y/m) .

Shaper Bound: Localization Technique

3wl )+ () hH
Pl [ W),

- Utilizing stronger variational formulations of f-divergences can obtain improved

results in both theoretical analysis and algorithmic performance.

. The best performance is achieved by Jeffreys-DD. suggesting the value of manually

adjusting the asymmetric properties in domain adaptation.
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= Restricted Hypothesis Space (Rashomon set): H, = {h € H|R,(h) <}

= Localized f-DD: For a given h € ‘H,,

Dy (v||p) £ sup B, [té(h,h)] — inf B, [¢"(t0(h, I) + a) — af.
WeH, t>0 aeR
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