

# **Unsupervised Domain Adaptation**

- Unknown distributions  $\mu$  and  $\nu$
- Labeled source-domain sample  $\mathcal{S} = \{X_i, Y_i\}_{i=1}^n \sim \mu^{\otimes n}$
- Unlabelled target-domain sample  $\mathcal{T} = \{X_j\}_{j=1}^m \sim \nu_{\mathcal{X}}^{\otimes m}$
- Goal: Efficiently transfer ML models between related domains at  $\implies$  Find a hypothesis  $h \in \mathcal{H}$  "works well" on  $\nu$

## **Limitations of Previous** *f***-Divergence-based**

- Relying on a Weak Variational Representation (i.e. Eq. 1)  $\implies$  Cannot recover Donsker and Varadhans representation of KL
- Slow Rate of Sample Complexitiv Bound  $\approx \Rightarrow e.g., \mathcal{O}(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}})$
- Gap Between Theory and Algorithm 😟  $\implies$  e.g., Overestimation of the *f*-divergence in [1].

### Main Contributions

- We design a novel f-divergence-based domain discrepancy meas f-DD, and derive an upper bound for the target error.
- To improve the convergence rate of our f-DD-based bound, we localization technique.
- Our f-DD outperforms previous f-divergence-based algorithms of UDA benchmarks.

# **Background on** *f***-Divergence**

• (f-Divergence) Let P and Q be two distributions on  $\Theta$ . Let  $\phi$ : convex function with  $\phi(1) = 0$ . If  $P \ll Q$ , then

$$\mathcal{D}_{\phi}(P||Q) \triangleq \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right],$$

e.g., Total variation, KL,  $\chi^2$ , squared Hellinger, Jeffreys, Jensen-

- Variational Representation of f-divergence.
- Original Legendre Transformation

$$D_{\phi}(P||Q) = \sup_{q \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[ g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[ \phi^*(g(\theta)) \right].$$

• Reparameterization of  $g \to g + \alpha$  ("Shift Transformation") [2]

$$D_{\phi}(P||Q) = \sup_{q} \mathbb{E}_{\theta \sim P} \left[ g(\theta) \right] - \inf_{\alpha \in \mathbb{R}} \left\{ \mathbb{E}_{\theta \sim Q} \left[ \phi^*(g(\theta) + \alpha) \right] \right\}$$

Eq. (2) is point-wise "tighter" than Eq. (1)

• Example: Donsker and Varadhans (DV) representation of KL di  $\phi(x) = x \log x - x + 1$ , then  $\phi^*(y) = e^y - 1$ • By Eq. (1)

$$D_{\mathrm{KL}}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_P[g(\theta)] - \mathbb{E}_Q\left[e^{g(\theta)} - 1\right].$$

• By Eq. (2)

$$D_{\mathrm{KL}}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_P[g(\theta)] - \log \mathbb{E}_Q\left[e^{g(\theta)}\right].$$

Eq. (4) recovers the DV representation of KL, Eq. (4) is pointwise tighter  $\log(x) \le x - 1 \text{ for } x > 0.$ 

# **On** *f***-Divergence Principled Domain Adaptation**: An Improved Framework

Ziqiao Wang<sup>1</sup>

<sup>1</sup>Tongji University

|                                       | Discrepancy-based DA Theory: Target Error Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                       | <ul> <li>Additional Notations</li> <li>Triangle property</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| t low cost                            | • Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_0^+$ . Assumptions : {Bounded loss<br>• Target error: $R_{\nu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \nu} [\ell(h(X),Y)]$ , Source error: $R_{\mu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \mu} [\ell(h(X),Y)]$<br>• We use $\ell(h,h')$ to denote $\ell(h(x),h'(x))$ , i.e. the disagreement of $h$ and $h'$ on $x$ .<br>• [1] defines:<br>$\widetilde{D}_{h}^{h}\mathcal{H}(x) = \frac{ \mathbb{T}_{h} - \ell(h(X),h'(X)) }{ \mathbb{T}_{h} - \mathbb{T}_{h} - \ell(h(X),h'(X)) }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| DA Works                              | $\mathbb{D}_{\phi}^{(\mu  \nu)} = \sup_{\substack{h' \in \mathcal{H}}}  \mathbb{E}_{\mu}[\ell(n,n)] - \mathbb{E}_{\nu}[\phi(\ell(n,n))] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                       | $\implies \text{Additional absolute value function added.}  \textcircled{9}$ $\bullet  \underline{\text{Theory}} \text{ (Target Error Bound):}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| L divergence. $\frac{1}{\sqrt{m}}$ ). | Target Error $\leq$ Source Error $+ \widetilde{D}_{\phi}^{h,\mathcal{H}}(\mu  \nu) +$ Ideal Joint Error.<br>$\implies$ Absolute value function is necessary for establishing this bound<br>• f-Domain Adversarial Learning (f-DAL) <u>Algorithm</u> :<br>$\min_{h} R_{\hat{\mu}}(h) + \max_{h'} \mathbb{E}_{\hat{\mu}} \left[\ell(h,h')\right] - \mathbb{E}_{\hat{\nu}} \left[\phi^*(\ell(h,h'))\right].$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                       | $h$ $d(\hat{\mu},\hat{ u};h)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                       | $\implies d(\hat{\mu}, \hat{\nu}; h)$ drops the absolute value function compared with $\widetilde{D}_{\phi}^{h, \mathcal{H}}(\mu    \nu)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| sure, termed                          | 400 - KL W/ Abs.       300 - KL W/ Abs.         300 - KL W/O Abs.       300 - KL W/O Abs.         300 - KL W/O Abs.       30K - State W/O Abs.         300 - KL W/O Abs.       30K - State W/O Abs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| refine it using a                     | 300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300-     300- |  |  |  |  |
| on three popular                      | (a) KI (Off coll c) (b) KI (Off coll c) (c) (c) (c) (c) (c) (c) (c) (c) (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| $: \mathbb{R}_+ \to \mathbb{R}$ be a  | Figure 1. The y-axis is the estimated f-divergence and the x-axis is the # of iteratio<br>$ \implies f-\text{DAL algorithm fails if the absolute value function is added.} $ • Our f-DD:<br>$ \boxed{D_{\phi}^{h,\mathcal{H}}(\nu  \mu) \triangleq \sup_{t \in \mathbb{R}, h' \in \mathcal{H}} \mathbb{E}_{\nu} [t\ell(h, h')] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} [\phi^*(t\ell(h, h') + \alpha) - \alpha].} $ $ \implies \text{Introducing the scaling parameter } t \text{ (i.e. "Affine Transformation") } \textcircled{\textcircled{O}}. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| -Shannon etc                          | Theorem (informal): <i>f</i> -DD-based Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| (1)                                   | For any $h \in \mathcal{H}$ ,<br>Target Error $\leq$ Source Error $+ \inf_{t \geq 0} \frac{D_{\phi}^{h,\mathcal{H}}(\nu  \mu) + K_{\mu}(t)}{t} + \text{Ideal Joint Error}$<br>where $K_{\mu}(t)$ is the upper bound for the "general CGF" for $\mu$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| α]}. (2)                              | <ul> <li>Ideal joint error can be min<sub>h*∈H</sub> R<sub>ν</sub>(h*) + R<sub>μ</sub>(h*) [3] or min{R<sub>ν</sub>(f<sub>μ</sub>), R<sub>μ</sub>(f<sub>ν</sub>)} [5].</li> <li>If φ is twice differentiable and φ" is monotone, then inf<sub>t≥0</sub> D<sup>h,H</sup>(ν  μ)+K<sub>μ</sub>(t)/t = √2/φ"(1)D<sup>h,H</sup>(ν) e.g., φ"(1) = 1 for KL recovers [4, Theorem 4.2].</li> <li>Sample complexity bound: w.h.p.,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| ivergence:                            | $D_{\phi}^{h,\mathcal{H}}(\nu  \mu) \le D_{\phi}^{h,\mathcal{H}}(\hat{\nu}  \hat{\mu}) + \text{Complexitiy Terms} + \mathcal{O}\left(1/\sqrt{n} + 1/\sqrt{m}\right).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| (3)                                   | Shaper Bound: Localization Technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| $(\Lambda)$                           | • Restricted Hypothesis Space (Rashomon set): $\mathcal{H}_r \triangleq \{h \in \mathcal{H}   R_\mu(h) \leq r\}$<br>• Localized f-DD: For a given $h \in \mathcal{H}_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| (4)                                   | $D_{\perp}^{h,\mathcal{H}_r}(\nu  \mu) \triangleq \sup \mathbb{E}_{\nu}[t\ell(h,h')] - \inf \mathbb{E}_{\nu}[\phi^*(t\ell(h,h') + \alpha) - \alpha]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| t unan Eq. (3) by                     | $ \begin{array}{c} \varphi \\ h' \in \mathcal{H}_r, t \geq 0 \end{array} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

Yongyi Mao<sup>2</sup>

<sup>2</sup>University of Ottawa







### Theorem (informal): Localized KL-DD-based Bound

| $\widehat{\ell}$ (Optimi                            | zing over                      | t may not be                                                | necessa            | ary) 🤓                   |
|-----------------------------------------------------|--------------------------------|-------------------------------------------------------------|--------------------|--------------------------|
| $\mathbb{E}_{\hat{\mu}}\left[\hat{\ell}(h,h) ight]$ | $(h') \Big] - \inf_{\alpha} f$ | $\mathbb{E}_{\hat{ u}}\left[\phi^*(\hat{\ell}(h,h))\right]$ | $^{\prime})+lpha)$ | $-\alpha \Big] \Big\} .$ |
| Accuracy                                            | (%) on UDA                     | A Classification '                                          | Tasks              |                          |
| od                                                  | Office-31                      | Office-Home                                                 | Digits             |                          |
| <b>」</b> [1]                                        | 89.5                           | 68.5                                                        | 96.3               |                          |
| L-DD)                                               | 89.8                           | 69.4                                                        | 96.9               |                          |
| $^{2}-DD)$                                          | 89.7                           | 69.2                                                        | 96.4               |                          |

[4] Ziqiao Wang and Yongyi Mao. Information-theoretic analysis of unsupervised domain adaptation. In International Conference on Learning Representations, 2023.

[5] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant representations for domain adaptation. In International Conference on Machine Learning, pages 7523–7532. PMLR, 2019.