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Introduction Conditional SGN Model

SkipGram word embedding models with negative sampling [1] (SGN) Let Q factorize in the following form
1s an elegant family of word embedding models. In this work, we ask Q(x,y) = Py () Qy 1 (¥)
the following questions.

» Beyond that particular distribution, if one chooses a different noise Remark 1: Consider some (x,y) € Supp(@)\Supp(F), namely, (x,y) is

distribution, 1s SGN still theoretically justified? ‘« d” bv O but not bv P. Then th dient i
> Is there a general principle underlying SGN that allows us to build covered” by @ but not by I’. Then the gradient s
= o(s(x,y)) - N~Q(x, y)

new embedding models? 95 (x,7)

» If so, how does the noise distribution impact the training of such . . Y
. . This may result in slow training.
models and their achievable performances?

Hypothesis: The best Q is the one that barely covers P, namely, equal

to P.
Our Contributions Under this hypothesis, choose Qy |, to closely resemble Py, = GANs
[3]t
'l sf }L il \
» We formalize a unified framework, referred to as “word-context O DO g/’@ O—O)
classification” (WCQC), for SGN-like word embedding models.

» We also provide a theoretical analysis that justifies the WCC
framework. Consequently, the matrix-factorization result of [2] can
also be derived from this analysis as a special case.

» The impact of noise distribution on learning word embeddings in
WCC is also studied. Experi ments

(a) caSGN1 (b) caSGN2 (c) caSGN3 (d) aSGN

Table 1: Spearman’s p (x100) on the word similarity tasks (text8).

Models WS-353 | WS-5TIM WS-HEL MTurk-287 M Turk-771 BW | MEN MNMC HG SimLex
T h e WCC Fram ewor k T SGN 7058 7A.54 68.10 64.00 55.50 36.63 | 62.16 | 60.82 | 60.17 | 29.60
ACE 71.49 74.61 69.50 65.52 56.63 37.85 | 62.75 | 62.65 | 62.39 | 30.37
aSGN 71.12 74.76 68.82 65.67 56.47 3758 | 6263 | 62.36 | 62.36 | 30.49
caSGN1 71.72 75.11 69.77 65.63 56.63 3763 | 63.40 | 62.54 | 64.18 | 30.36
72.02

caSGN2 . 75.05 69.64 65.44 57.02 37.61 | 63.36 | 62.86 | 64.63 | 30.79
caSGN3 | 71.74 74.61 69.63 65.57 56.56 37.78 | 62.69 | 62.61 | 62.52 | 30.31
. s L2 : + —. .. : I

Binary classification problem D" and D Table 2: Spearman’s p (x100) on the word similarity tasks (wiki).
> Objective: distinguish the word-context pairs drawn from P from Models | WS-353 | WS-SIM | WS-REL | MTurk-287 | MIurk-771 | RW | MEN | MC RG | SimLex
hose drawn from Q: TR s s | an | 8% | £ |52 | SX BE 5y 0
those rawn If)m @’ . . . o aggm 70.66 75.69 65.69 65.14 61.22 39.81 | 68.99 | 77.38 | 73.67 | 31.58
» The classification problem is equivalent to learning the conditional SasaNz | 7037 | 7o8a | essd 85 26 6228 | 4124 | 70.03 | 71.67 | 75.05 | 3045
caSGN3 | 70.27 74.93 65.26 65.98 59.52 41.55 | 70.05 | 75.95 | 73.52 | 31.40

distribution py vy (1]x,y) = a(s(x, y))

WCC: Let f:X - X and g:Y - Y be two functions representing the Q‘ ,Q “" ‘ .' " ’ *“’ ? ””

embedding maps for words and contexts respectively. The standard

cross-entropy loss for this classification problem is (a) WS-353 (b) WS-SIM (c) WS-REL (d) MTurk-287 () MTurk-771

P = — E log O'(S(x, y)) — E log a(—s(x, y)) . ﬂ% ‘ ‘ , “ I, ? '_ [T ‘
(x,y)ED* (x,y)ED™ . ’ , . . ‘ ’ ‘ ‘ ’ ‘ ' ‘ ,
and the solution is -
(f"97) = ar%mm £(f,9) (f) RW (¢) MEN (h) MC (i) RG (j) SimLex-999
4 Table 3: Accuracy on the word analogy task (text8). - -
—_ — Model Semantic Syntactic Total 0.7 Jﬁmﬁfﬁw o AR
Theorem 1. Suppose that Q coverse P. Then the following holds. ES%E:I St Sa 5t | 5500 » _;;:W g ,;;}’W
: : : a 20.84 27.86 24.94 /] p
1. Thelossf,as a funct1gq of s,1s convex. in s. | | caSGN1 | 21.25 28.30 | 25.36 I §y
2. If f and g are sufficiently expressive, then there is a unique cabGls | 20.49 =78 | 2270 Soaf ff /[ imemson A
) ) ) T ... Table 4: Accuracy on the word analogy task (wiki). | R ] e
configuration s* of s that minimizes #(s), and the global minimizer NModel | Semantic | Syntactic | Tota -4 | L
* . . SGN 27.28 3552 31.77 N el - : : —
S Of ’E(S) 1S g].ven bY ACE 27 .62 35.30 31.81 T ) 100 150 200 0 50 100 150 200
n aSGN 35.24 38.66 37.10 itcration ( x 10000) itcration ( x 10000)
P(x,y) N casaN2 | a700 | 3998 | 386l ot
s*(x,y) = log= E log — caSGN3 | 41.21 3024 | 40.14 (a) WS-353 (b) Google Analog

Q(x,y) 8N —

for every (x,y) e X X Y.
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loss function 7 is jiver)l by . _— - I*I Na ‘Onal ResearCh
s'(x,y)=x"- Og~ 08
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