On SkipGram Word Embedding Models with Negative Sampling Unified Framework and Impact of Noise Distributions							
Ziqiao Wang ¹ Yongyi Mao ¹	Hongyu Guo ² Richong Zhang ³						
¹ University of Ottawa ² National Resea	rch Council Canada ³ Beihang University						
Introduction	Conditional SGN Model						
 SkipGram word embedding models with negative sampling [1] (SGN) is an elegant family of word embedding models. In this work, we ask the following questions. Beyond that particular distribution, if one chooses a different noise distribution, is SGN still theoretically justified? Is there a general principle underlying SGN that allows us to build new embedding models? If so, how does the noise distribution impact the training of such here a general build in the second distribution. 	Let \mathbb{Q} factorize in the following form $\mathbb{Q}(x, y) = \widetilde{\mathbb{P}}_X(x)\mathbb{Q}_{Y x}(y)$ Remark 1: Consider some $(x, y) \in \text{Supp}(\widetilde{\mathbb{Q}}) \setminus \text{Supp}(\widetilde{\mathbb{P}})$, namely, (x, y) is "covered" by $\widetilde{\mathbb{Q}}$ but not by $\widetilde{\mathbb{P}}$. Then the gradient is $\frac{\partial \ell}{\partial s(x, y)} = \sigma(s(x, y)) \cdot N^- \widetilde{\mathbb{Q}}(x, y)$ This may result in slow training.						

models and their achievable performances?

Our Contributions

- > We formalize a unified framework, referred to as "word-context classification" (WCC), for SGN-like word embedding models.
- We also provide a theoretical analysis that justifies the WCC framework. Consequently, the matrix-factorization result of [2] can also be derived from this analysis as a special case.
- The impact of noise distribution on learning word embeddings in WCC is also studied.

The WCC Framework

Binary classification problem D^+ and D^- :

- > <u>Objective</u>: distinguish the word-context pairs drawn from \mathbb{P} from those drawn from \mathbb{Q} ;
- > The classification problem is equivalent to learning the conditional distribution $p_{U|XY}(1|x,y) \coloneqq \sigma(s(x,y))$

Hypothesis: The best $\widetilde{\mathbb{Q}}$ is the one that barely covers $\widetilde{\mathbb{P}}$, namely, equal to $\widetilde{\mathbb{P}}$.

Under this hypothesis, choose $\mathbb{Q}_{Y|x}$ to closely resemble $\widetilde{\mathbb{P}}_{Y|x} \Rightarrow \underline{\mathbf{GANs}}$ [3]!

(a) caSGN1 (b) caSGN2 (c) caSGN3 (d) aSGN

Experiments

Table 1: Spearman's ρ (*100) on the word similarity tasks (text8).

Models	WS-353	WS-SIM	WS-REL	MTurk-287	MTurk-771	RW	MEN	MC	RG	SimLex
SGN	70.58	74.54	68.10	64.29	55.59	36.63	62.16	60.82	60.17	29.69
ACE	71.49	74.61	69.50	65.52	56.63	37.85	62.75	62.65	62.39	30.37
aSGN	71.12	74.76	68.82	65.67	56.47	37.58	62.63	62.36	62.36	30.49
caSGN1	71.72	75.11	69.77	65.63	56.63	37.63	63.40	62.54	64.18	30.36
caSGN2	72.02	75.05	69.64	65.44	57.02	37.61	63.36	62.86	64.63	30.79
caSGN3	71.74	74.61	69.63	65.57	56.56	37.78	62.69	62.61	62.52	30.31

Table 2: Spearman's ρ (*1	100) on the word	similarity tasks	(wiki).
--------------------------------	------------------	------------------	---------

Models	WS-353	WS-SIM	WS-REL	MTurk-287	MTurk-771	RW	MEN	MC	RG	SimLex
SGN	67.49	74.61	61.51	63.00	59.24	39.99	68.73	64.47	69.59	31.37
ACE	71.03	76.23	66.24	63.05	60.27	40.02	67.55	76.60	70.01	31.10
aSGN	70.66	75.69	65.69	65.14	61.22	39.81	68.99	77.38	73.67	31.58
caSGN1	71.56	76.05	65.37	63.05	61.63	40.74	69.72	80.07	77.58	31.27

WCC: Let $f: X \to \overline{X}$ and $g: Y \to \overline{Y}$ be two functions representing the embedding maps for words and contexts respectively. The standard cross-entropy loss for this classification problem is

$$\ell = -\sum_{(x,y)\in D^+} \log \sigma(s(x,y)) - \sum_{(x,y)\in D^-} \log \sigma(-s(x,y))$$

and the solution is

$$(f^*, g^*) \coloneqq rgmin_{f,g} \ell(f, g)$$

Theorem 1: Suppose that $\widetilde{\mathbb{Q}}$ coverse $\widetilde{\mathbb{P}}$. Then the following holds.

- 1. The loss ℓ , as a function of s, is convex in s. 2. If f and a are sufficiently expressive then
- 2. If f and g are sufficiently expressive, then there is a unique configuration s^* of s that minimizes $\ell(s)$, and the global minimizer s^* of $\ell(s)$ is given by

$$s^*(x,y) = \log \frac{\widetilde{\mathbb{P}}(x,y)}{\widetilde{\mathbb{Q}}(x,y)} + \log \frac{N^+}{N^-}$$

for every $(x, y) \in X \times Y$.

Corollary 1: Let $N^+ = n$ and $N^- = kn$. Then it is possible to construct a distribution $\widehat{\mathbb{P}}$ on $X \times Y$ using f^* , g^* , k and \mathbb{Q} such that for every $(x, y) \in X \times Y$, $\widehat{\mathbb{P}}(x, y)$ converges to $\mathbb{P}(x, y)$ in probability as $n \to \infty$.

SGN Model

Let \mathbb{Q} factorize in the following form $\mathbb{Q}(x, y) = \widetilde{\mathbb{P}}_X(x)\mathbb{Q}_Y(y)$

Corollary 2: In an unconditional SGN model, the global minimizer of loss function ℓ is given by

$$s^*(x,y) = \bar{x} \cdot \bar{y} = \log \frac{\mathbb{P}(x,y)}{\mathbb{P}_X(x)\mathbb{Q}_Y(y)} - \log k$$

As a special case when $\mathbb{Q}_Y(y) = \mathbb{P}_Y(y) \Longrightarrow \text{"}\underline{PMI}\text{"}!.$

[1] Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, 3111–3119.
[2] Levy, O., and Goldberg, Y. 2014. Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems, 2177– 2185.

[3] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative adversarial nets. In Advances in neural information processing systems , 2672–2680.

