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What is Generalization?

• Our ultimate interest is the testing performance of the learned model

• Generalization error = testing error - training error
• Ideally, we wish to have training error≈ 0 and generalization error≈ 0

• In practice, we cannot access to the unknown distribution of data =⇒small
training loss and small generalization bound/guarantee gives a small testing
error.
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What is Generalization Bound?

• High-probability generalization bound:

P(ts_error− tr_error ≥ ϵ) ≤ δ.

Or equivalently, w.p. ≥ 1− δ, we have

ts_error− tr_error ≤ ϵ.

Typically,

ϵ ≤ O(
Complexity Measure

n
).
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What is Generalization Bound?

• Rademacher Complexity [Bartlett and Mendelson, 2002]:
Given a function class F = {f : Z → R} and a sample S = {Zi}ni=1, the empirical
Rademacher Complexity is

R̂n(F) ≜ Eε1:n

[
sup
f∈F

1

n

n∑
i=1

εif(Zi)

]
,

where εi ∼ Unif({−1, 1}) is called Rademacher variable.
=⇒ It measures the ability of functions from F to fit random noise.
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Failure in Modern Deep Learning

• Zhang, Chiyuan, et al. ”Understanding deep learning requires rethinking
generalization.” ICLR 2017:
Deep neural networks (DNN) can perfectly fit random labels

=⇒ It implicitly shows the Rademacher complexity of DNN is very large

=⇒ ts_error− tr_error ≤ O( R̂n(F)
n ) is vacuous!

• We need new generalization bounds in deep learning!
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Notations

• Training dataset: S = {Zi}ni=1 ∈ Z , drawn i.i.d. from µ

• Hypothesis space: W ⊆ Rd; Predictor space: F = {fw : X → Y|w ∈ W}
• Learning algorithm: A : Zn → W by PW|S
• Loss: ℓ : W ×Z → R+

• We’re interested in
• Population risk: Lµ(w) ≜ EZ∼µ[ℓ(w, Z)]; Expected population risk: Lµ = EW [Lµ(W)]
• Empirical risk: LS(w) ≜ 1

n

∑n
i=1 ℓ(w, Zi); Expected empirical risk: Ln = EW,S [LS(W)]

• Expected generalization error: Err ≜ Lµ − Ln = EW,S[Lµ(W)− LS(W)]
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First MI Bound

Lemma (Xu and Raginsky [2017])

Assume the loss ℓ(w, Z) is R-subgaussian1 for any w ∈ W . The generalization error of
A is bounded by

|Err| ≤
√

2R2

n
I(W; S).

Mutual information I(W; S) ≜ DKL(PW,S||PW ⊗ PS).

=⇒ Distribution-dependent and Algorithm-dependent
Problem: I(W; S) = H(W)− H(W|S) → ∞ in some cases

1A random variable X is R-subgaussian if for any ρ, logE exp (ρ (X− EX)) ≤ ρ2R2/2.
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Supersample Setting

Supersample Z̃ U=⇒ S = Z̃U = {Z̃i,Ui}ni=1:

Z̃1,0 Z̃1,1
Z̃2,0 Z̃2,1
...

...
Z̃n,0 Z̃n,1

U=⇒

Z̃1,U1
Z̃2,U2
...

Z̃n,Un

where U = (U1,U2, . . . ,Un)T ∼ Unif({0, 1}n).

Err = 1

n

n∑
i=1

EW,Ui ,̃Z

[
(−1)Ui

(
ℓ(W, Z̃i,1)− ℓ(W, Z̃i,0)

)]
.
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CMI Bounds

Lemma (Steinke and Zakynthinou [2020])

Assume the loss is bounded between [0, 1], we have

|Err| ≤

√
2I(W;U|Z̃)

n
.

Nice property: I(W;U|Z̃) ≤ H(U) = n ln 2 =⇒ bounded upper bound.
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CMI, f-CMI and e-CMI

• Using the superscripts+ and− to replace the 0 and 1: e.g, let Z̃i = (Z̃+i , Z̃
−
i )

• Li ≜ (L+i , L
−
i ) = (ℓ(W, Z̃+i ), ℓ(W, Z̃−i ))

• ∆Li = ℓ(W, Z̃+i )− ℓ(W, Z̃−i )

Z̃+1 Z̃−1
Z̃+2 Z̃−2
...

...
Z̃+n Z̃−n

fW=⇒

fW(X̃+1 ) fW(X̃−1 )
fW(X̃+2 ) fW(X̃−2 )

...
...

fW(X̃+n ) fW(X̃−n )

ℓ=⇒

ℓ(W, Z̃+1 ) ℓ(W, Z̃−1 )
ℓ(W, Z̃+2 ) ℓ(W, Z̃−2 )

...
...

ℓ(W, Z̃+n ) ℓ(W, Z̃−n )

∆=⇒

∆L1
∆L2
...

∆Ln

I(W;Ui|Z̃)︸ ︷︷ ︸
CMI

≥ I(fW(Z̃i);Ui|Z̃)︸ ︷︷ ︸
f−CMI [Harutyunyan et al., 2021]

≥ I(Li;Ui|Z̃)︸ ︷︷ ︸
e−CMI [Hellström and Durisi, 2022]

≥ I(∆Li;Ui|Z̃)︸ ︷︷ ︸
ld−CMI (Ours)
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Generalization Bounds via Loss Difference

Theorem
Assume the loss is bounded between [0, 1], we have

|Err| ≤1

n

n∑
i=1

EZ̃

√
2ĨZ(∆Li;Ui) ≤

1

n

n∑
i=1

√
2I(∆Li;Ui|Z̃), (1)

|Err| ≤1

n

n∑
i=1

√
2I(∆Li;Ui). (2)

Estimate I(W; Zi) vs I(∆Li;Ui):
• W and Zi are high-dimensional R.V.’s
• ∆Li is an one-dimensional R.V. and Ui is a binary R.V. =⇒ Easy-to-Compute!
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A Communication View of Generalization

0

1

1
1− αi − ϵi

ϵi

0

αi

αi

−1
1− αi − ϵi

ϵi

Figure: Channel from Ui to∆Li. Zero-one
loss assumed.

Theorem
Under zero-one loss and for any interpolating
algorithmA, I(∆Li;Ui) = (1− αi) ln 2 nats for each
i, and |Err| = Lµ =

∑n
i=1

I(∆Li;Ui)
n ln 2 .

=⇒ Generalization error is exactly determined by
the communication rate over the channel in the
figure averaged over all such channels.
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Generalization Bounds via Single Loss

Key observation:
Err = 1

n

∑n
i=1 EW,Ui ,̃Z

[
(−1)Ui

(
ℓ(W, Z̃+i )− ℓ(W, Z̃−i )

)]
= 2

n

∑n
i=1 EL+i ,εi

[
εiL+i

]
, where

εi = (−1)Ui .

Recall thatRn(W) ≜ ESEε1:n

[
supw∈W

1
n

∑n
i=1 εiℓ(w, Zi)

]
=⇒ Err ≤ 2Rn(W).

Theorem
Assume ℓ(·, ·) ∈ [0, 1], we have

|Err| ≤ 2

n

n∑
i=1

√
2I(L+i ;Ui) ≤

2

n

n∑
i=1

√
2I(fW(X+i );Ui|Z̃).

Bounds only depend on a single column of Z̃; Still easy-to-compute.
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Fast-Rate MI Bound

Consider the weighted generalization error, ErrC1 ≜ Lµ − (1 + C1)Ln.

=⇒ widely used in the PAC-Bayes literature.

Lemma
The weighted generalization error can be rewritten as

ErrC1 =
2 + C1

n

n∑
i=1

EL+i ,ε̃i

[
ε̃iL+i

]
,

where ε̃i = (−1)Ui − C1
C1+2 is a shifted Rademacher variable with mean− C1

C1+2 .
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Fast-Rate MI Bound

Theorem
Let ℓ(·, ·) ∈ [0, 1]. There exist C1,C2 > 0 such that

Lµ ≤(1 + C1)Ln +
n∑

i=1

I(L+i ;Ui)
C2n

, (3)

Lµ ≤Ln +
n∑

i=1

4I(L+i ;Ui)
n

+ 4

√√√√ n∑
i=1

LnI(L+i ;Ui)
n

. (4)

Faster Rate than Square-Root based Bound

If Ln → 0, then (3)(4) vanish with a faster rate.
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Variance Based MI Bound

Inspired by [Seldin et al., 2012, Tolstikhin and Seldin, 2013],

Definition (γ-Variance)

For any γ ∈ (0, 1), γ-variance for a learning algorithm is defined as

V(γ) ≜ EW,S

[
1

n

n∑
i=1

(ℓ(W, Zi)− (1 + γ)LS(W))2
]
.

Lemma
Under the zero-one loss assumption, we have V(γ) = Ln − (1− γ2)EW,S

[
L2S(W)

]
.
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Variance Based MI Bound

Lemma
For any C1 > 0, we have Err − C1V(γ) ≤ 2+C1γ2

n

∑n
i=1 EL+i ,ε̃i

[
ε̃iL+i

]
, where

ε̃i = εi − C1γ2

C1γ2+2
is the shifted Rademacher variable with mean− C1γ2

C1γ2+2
.

Theorem
Assume ℓ(·, ·) ∈ {0, 1}, γ ∈ (0, 1). Then, there exist C1,C2 > 0 such that

Err ≤C1V(γ) +
n∑

i=1

I(L+i ;Ui)
nC2

. (5)
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Variance Based MI Bound

Compared with previous fast-rate bound:

Lµ ≤(1 + C1)Ln +
n∑

i=1

I(L+i ;Ui)
C2n

,

Err ≤C1V(γ) +
n∑

i=1

I(L+i ;Ui)
nC2

=⇒ Lµ ≤(1 + C1)Ln−C1(1− γ2)EW,S
[
L2S(W)

]
+

n∑
i=1

I(L+i ;Ui)
C2n

.

• Ln = 0 → V(γ) = 0, but Ln = 0 ↚ V(γ) = 0;
• For the fixed C1 and C2, variance-based bound is tighter than the previous

bound with the gap being at least C1(1− γ2)EW,S
[
L2S(W)

]
.
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Variance Based MI Bound
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Sharpness Based MI Bound

Inspired by Yang et al. [2019],

Definition (λ-Sharpness)

For any λ ∈ (0, 1), the “λ-sharpness” at position i of the training set is defined as

Fi(λ) ≜ EW,Zi

[
ℓ(W, Zi)− (1 + λ)EW|Ziℓ(W, Zi)

]2
.

Lemma
Assume ℓ(·, ·) ∈ {0, 1}, we have Fi(λ) = EW,Zi [ℓ(W, Zi)]− (1− λ2)EZi

[
E2
W|Ziℓ(W, Zi)

]
.
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Sharpness Based MI Bound

Lemma
Let F(λ) = 1

n

∑n
i=1 Fi(λ). For any C1 > 0, we have

Err − C1F(λ) =
C1 + 2

n

n∑
i=1

EL+i ,Ui

[
ε̃iL+i − C1(1− λ2)

C1 + 2
ε̂ih(Ui)

]
,

where ε̃i = εi − C1
C1+2 and ε̂i = εi − 1 are the shifted Rademacher variables, and

h(Ui) = EZ̃+i |Ui

[
E2
L+i |̃Z+i ,Ui

L+i
]
.
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Sharpness Based MI Bound

Theorem
Assume ℓ(·, ·) ∈ {0, 1}, λ ∈ (0, 1). Then, there exist C1,C2 > 0 such that

Err ≤C1F(λ) +
n∑

i=1

I(L+i ;Ui)
C2n

. (6)

• Ln = 0 → F(λ) = 0, but Ln = 0 ↚ F(λ) = 0;
• Sharpness bound can be further bounded:

Lµ ≤ (1 + C1)Ln−C1(1− λ2)L2n +
∑n

i=1
I(L+i ;Ui)
C2n

.
For any fixed C1 and C2, sharpness based bound is tighter than the previous
fast-rate bound.
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Experiments

We will compare
• Uncondi.: 1

n

∑n
i=1

√
2I(∆Li;Ui)

• Disint.: 1
n

∑n
i=1 EZ̃

√
2ĨZ(∆Li;Ui)

• Binary KL: Hellström and Durisi [2022]

• Weighted:
∑n

i=1
4I(L+i ;Ui)

n + 4

√∑n
i=1

LnI(L+i ;Ui)
n

• Variance: C1V(γ) +
∑n

i=1
I(L+i ;Ui)
nC2

• Sharpness: C1F(λ) +
∑n

i=1
I(L+i ;Ui)
C2n
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Experiments on Synthetic Gaussian Dataset
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(a) |Y| = 2 (Realizable)
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(b) |Y| = 2 (Non-Separable)

Figure: Comparison of bounds on the binary classification task with linear classifier. (a) Binary
classification with a separable µ. (b) Binary classification with a non-separable µ.
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Experiments on Synthetic Gaussian Dataset
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(a) |Y| = 10 (Realizable)
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(b) |Y| = 10 (Non-Separable)

Figure: Comparison of bounds on the ten-class classification task with linear classifier. (a) Ten-class
classification with a separable µ. (b) Ten-class classification with a non-separable µ.
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Experiments on Real datasets
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(a) CNN on MNIST
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(b) ResNet on CIFAR10
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(c) SGLD (MNIST)

Figure: Comparison of bounds on two real datasets, MNIST (“4 vs 9”) and CIFAR10.
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The End
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