Tighter Information-Theoretic Generalization Bounds from Supersamples
 International Conference On Machine Learning

Ziqiao Wang ${ }^{1} \quad$ Yongyi Mao ${ }^{1}$

Overview

1. Background
2. Preliminaries
3. Loss-Difference based CMI/MI Bound
4. Generalization Bounds via Correlating with Rademacher Sequence
5. Numerical Results
6. References

What is Generalization?

- Our ultimate interest is the testing performance of the learned model

What is Generalization?

- Our ultimate interest is the testing performance of the learned model
- Generalization error = testing error - training error

What is Generalization?

- Our ultimate interest is the testing performance of the learned model
- Generalization error = testing error - training error
- Ideally, we wish to have training error ≈ 0 and generalization error ≈ 0

What is Generalization?

- Our ultimate interest is the testing performance of the learned model
- Generalization error = testing error - training error
- Ideally, we wish to have training error ≈ 0 and generalization error ≈ 0
- In practice, we cannot access to the unknown distribution of data

What is Generalization?

- Our ultimate interest is the testing performance of the learned model
- Generalization error = testing error - training error
- Ideally, we wish to have training error ≈ 0 and generalization error ≈ 0
- In practice, we cannot access to the unknown distribution of data \Longrightarrow small training loss and small generalization bound/guarantee gives a small testing error.

What is Generalization Bound?

- High-probability generalization bound:

$$
P(\text { ts_error - tr_error } \geq \epsilon) \leq \delta .
$$

Or equivalently, w.p. $\geq 1-\delta$, we have

$$
\text { ts_error - tr_error } \leq \epsilon \text {. }
$$

Typically,

$$
\epsilon \leq \mathcal{O}\left(\frac{\text { Complexity Measure }}{n}\right)
$$

What is Generalization Bound?

- Rademacher Complexity [Bartlett and Mendelson, 2002]:

Given a function class $\mathcal{F}=\{f: \mathcal{Z} \rightarrow \mathbb{R}\}$ and a sample $S=\left\{Z_{i}\right\}_{i=1}^{n}$, the empirical Rademacher Complexity is

$$
\hat{\mathfrak{R}}_{n}(\mathcal{F}) \triangleq \mathbb{E}_{\varepsilon_{1: n}}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(Z_{i}\right)\right],
$$

where $\varepsilon_{i} \sim \operatorname{Unif}(\{-1,1\})$ is called Rademacher variable. \Longrightarrow It measures the ability of functions from \mathcal{F} to fit random noise.

Failure in Modern Deep Learning

- Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." ICLR 2017:
Deep neural networks (DNN) can perfectly fit random labels

Failure in Modern Deep Learning

- Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." ICLR 2017:
Deep neural networks (DNN) can perfectly fit random labels
\Longrightarrow It implicitly shows the Rademacher complexity of DNN is very large

Failure in Modern Deep Learning

- Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." ICLR 2017:
Deep neural networks (DNN) can perfectly fit random labels
\Longrightarrow It implicitly shows the Rademacher complexity of DNN is very large
\Longrightarrow ts_error - tr_error $\leq \mathcal{O}\left(\frac{\hat{\mathfrak{R}}_{n}(\mathcal{F})}{n}\right)$ is vacuous!

Failure in Modern Deep Learning

- Zhang, Chiyuan, et al. "Understanding deep learning requires rethinking generalization." ICLR 2017:
Deep neural networks (DNN) can perfectly fit random labels
\Longrightarrow It implicitly shows the Rademacher complexity of DNN is very large
\Longrightarrow ts_error - tr_error $\leq \mathcal{O}\left(\frac{\mathfrak{\mathfrak { R }}_{n}(\mathcal{F})}{n}\right)$ is vacuous!
- We need new generalization bounds in deep learning!

Notations

- Training dataset: $S=\left\{Z_{i}\right\}_{i=1}^{n} \in \mathcal{Z}$, drawn i.i.d. from μ
- Hypothesis space: $\mathcal{W} \subseteq \mathbb{R}^{d}$; Predictor space: $\mathcal{F}=\left\{f_{w}: \mathcal{X} \rightarrow \mathcal{Y} \mid w \in \mathcal{W}\right\}$
- Learning algorithm: $\mathcal{A}: \mathcal{Z}^{n} \rightarrow \mathcal{W}$ by $P_{W \mid S}$
- Loss: $\ell: \mathcal{W} \times \mathcal{Z} \rightarrow \mathbb{R}^{+}$

Notations

- Training dataset: $S=\left\{Z_{i}\right\}_{i=1}^{n} \in \mathcal{Z}$, drawn i.i.d. from μ
- Hypothesis space: $\mathcal{W} \subseteq \mathbb{R}^{d}$; Predictor space: $\mathcal{F}=\left\{f_{w}: \mathcal{X} \rightarrow \mathcal{Y} \mid w \in \mathcal{W}\right\}$
- Learning algorithm: $\mathcal{A}: \mathcal{Z}^{n} \rightarrow \mathcal{W}$ by $P_{W \mid S}$
- Loss: $\ell: \mathcal{W} \times \mathcal{Z} \rightarrow \mathbb{R}^{+}$
- We're interested in
- Population risk: $L_{\mu}(w) \triangleq \mathbb{E}_{z \sim \mu}[\ell(w, Z)]$; Expected population risk: $L_{\mu}=\mathbb{E}_{W}\left[L_{\mu}(W)\right]$
- Empirical risk: $L_{S}(w) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell\left(w, Z_{i}\right)$; Expected empirical risk: $L_{n}=\mathbb{E}_{W, S}\left[L_{S}(W)\right]$
- Expected generalization error: Err $\triangleq L_{\mu}-L_{n}=\mathbb{E}_{W, S}\left[L_{\mu}(W)-L_{S}(W)\right]$

First MI Bound

Lemma (Xu and Raginsky [2017])

Assume the loss $\ell(w, Z)$ is R-subgaussian ${ }^{1}$ for any $w \in \mathcal{W}$. The generalization error of \mathcal{A} is bounded by

$$
|\operatorname{Err}| \leq \sqrt{\frac{2 R^{2}}{n} l(W ; S)}
$$

[^0]
First MI Bound

Lemma (Xu and Raginsky [2017])

Assume the loss $\ell(w, Z)$ is R-subgaussian ${ }^{1}$ for any $w \in \mathcal{W}$. The generalization error of \mathcal{A} is bounded by

$$
|\operatorname{Err}| \leq \sqrt{\frac{2 R^{2}}{n} l(W ; S)}
$$

Mutual information $I(W ; S) \triangleq \mathrm{D}_{\mathrm{KL}}\left(P_{W, S} \| P_{W} \otimes P_{S}\right)$.
\Longrightarrow Distribution-dependent and Algorithm-dependent

[^1]
First MI Bound

Lemma (Xu and Raginsky [2017])

Assume the loss $\ell(w, Z)$ is R-subgaussian ${ }^{1}$ for any $w \in \mathcal{W}$. The generalization error of \mathcal{A} is bounded by

$$
|\operatorname{Err}| \leq \sqrt{\frac{2 R^{2}}{n} l(W ; S)}
$$

Mutual information $I(W ; S) \triangleq \mathrm{D}_{\mathrm{KL}}\left(P_{W, S} \| P_{W} \otimes P_{S}\right)$.
\Longrightarrow Distribution-dependent and Algorithm-dependent
Problem: $I(W ; S)=H(W)-H(W \mid S) \rightarrow \infty$ in some cases

[^2]
Supersample Setting

Supersample $\widetilde{Z} \xlongequal{U} S=\tilde{Z}_{U}=\left\{\tilde{Z}_{i, U_{i}}\right\}_{i=1}^{n}$:

$$
\begin{array}{|c|c|}
\hline \widetilde{Z}_{1,0} & \tilde{Z}_{1,1} \\
\widetilde{Z}_{2,0} & \widetilde{Z}_{2,1} \\
\vdots & \vdots \\
\widetilde{Z}_{n, 0} & \widetilde{Z}_{n, 1}
\end{array} \xlongequal{\longrightarrow} \begin{array}{|c|}
\hline \widetilde{Z}_{1, U_{1}} \\
\widetilde{Z}_{2, U_{2}} \\
\vdots \\
\widetilde{Z}_{n, U_{n}} \\
\hline
\end{array}
$$

where $U=\left(U_{1}, U_{2}, \ldots, U_{n}\right)^{T} \sim \operatorname{Unif}\left(\{0,1\}^{n}\right)$.

$$
\operatorname{Err}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, u_{i}, \tilde{Z}}\left[(-1)^{U_{i}}\left(\ell\left(W, \tilde{Z}_{i, 1}\right)-\ell\left(W, \widetilde{Z}_{i, 0}\right)\right)\right] .
$$

CMI Bounds

Lemma (Steinke and Zakynthinou [2020])
Assume the loss is bounded between $[0,1]$, we have

$$
|\operatorname{Err}| \leq \sqrt{\frac{2 l(W ; U \mid \widetilde{Z})}{n}}
$$

Nice property: $I(W ; U \mid \widetilde{Z}) \leq H(U)=n \ln 2 \Longrightarrow$ bounded upper bound.

CMI, $f-\mathrm{CMI}$ and e-CMI

- Using the superscripts + and - to replace the 0 and 1: e.g, let $\widetilde{Z}_{i}=\left(\widetilde{Z}_{i}^{+}, \widetilde{Z}_{i}^{-}\right)$
- $L_{i} \triangleq\left(L_{i}^{+}, L_{i}^{-}\right)=\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right), \ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)$
- $\Delta L_{i}=\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)$

CMI, $f-\mathrm{CMI}$ and e-CMI

- Using the superscripts + and - to replace the 0 and 1: e.g, let $\widetilde{Z}_{i}=\left(\widetilde{Z}_{i}^{+}, \widetilde{Z}_{i}^{-}\right)$
- $L_{i} \triangleq\left(L_{i}^{+}, L_{i}^{-}\right)=\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right), \ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)$
- $\Delta L_{i}=\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)$

$\underbrace{I\left(W ; U_{i} \mid \widetilde{Z}\right)}_{\text {CMI }} \geq \underbrace{I\left(f_{W}\left(\widetilde{Z}_{i}\right) ; U_{i} \mid \widetilde{Z}\right)}_{f-\text { CMI }[\text { Harutyunyan et al., 2021] }} \geq \underbrace{I\left(L_{i} ; U_{i} \mid \widetilde{Z}\right)}_{\text {e-CMI [Hellström and Durisi, 2022] }}$

CMI, $f-\mathrm{CMI}$ and e-CMI

- Using the superscripts + and - to replace the 0 and 1: e.g, let $\widetilde{Z}_{i}=\left(\widetilde{Z}_{i}^{+}, \widetilde{Z}_{i}^{-}\right)$
- $L_{i} \triangleq\left(L_{i}^{+}, L_{i}^{-}\right)=\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right), \ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)$
- $\Delta L_{i}=\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)$

$\underbrace{I\left(W ; U_{i} \mid \widetilde{Z}\right)}_{\text {CMI }} \geq \underbrace{I\left(f_{W}\left(\widetilde{Z}_{i}\right) ; U_{i} \mid \widetilde{Z}\right)}_{f-\text { CMI }[\text { Harutyunyan et al., 2021] }} \geq \underbrace{I\left(L_{i} ; U_{i} \mid \widetilde{Z}\right)}_{\text {e-CMI [Hellström and Durisi, 2022] }} \geq \underbrace{I\left(\Delta L_{i} ; U_{i} \mid \widetilde{Z}\right)}_{\text {ld-CMI (Ours) }}$

Generalization Bounds via Loss Difference

Theorem

Assume the loss is bounded between $[0,1]$, we have

$$
\begin{align*}
& |\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\tilde{Z}} \sqrt{2 \widetilde{I^{2}}\left(\Delta L_{i} ; U_{i}\right)} \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 l\left(\Delta L_{i} ; U_{i} \mid \widetilde{Z}\right)}, \tag{1}\\
& |\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 l\left(\Delta L_{i} ; U_{i}\right)} . \tag{2}
\end{align*}
$$

Generalization Bounds via Loss Difference

Theorem

Assume the loss is bounded between $[0,1]$, we have

$$
\begin{align*}
& |\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\tilde{Z}} \sqrt{2 \widetilde{Z}\left(\Delta L_{i} ; U_{i}\right)} \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 l\left(\Delta L_{i} ; U_{i} \mid \widetilde{Z}\right)}, \tag{1}\\
& |\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 l\left(\Delta L_{i} ; U_{i}\right)} . \tag{2}
\end{align*}
$$

Estimate $I\left(W ; Z_{i}\right)$ vs $I\left(\Delta L_{i} ; U_{i}\right)$:

- W and Z_{i} are high-dimensional R.V.'s
- ΔL_{i} is an one-dimensional R.V. and U_{i} is a binary R.V. \Longrightarrow Easy-to-Compute!

A Communication View of Generalization

Figure: Channel from U_{i} to ΔL_{i}. Zero-one loss assumed.

Theorem

Under zero-one loss and for any interpolating algorithm $\mathcal{A}, I\left(\Delta L_{i} ; U_{i}\right)=\left(1-\alpha_{i}\right) \ln 2$ nats for each i, and $|\operatorname{Err}|=L_{\mu}=\sum_{i=1}^{n} \frac{I\left(\Delta L_{i} ; U_{i}\right)}{n \ln 2}$.
\Longrightarrow Generalization error is exactly determined by the communication rate over the channel in the figure averaged over all such channels.

Generalization Bounds via Single Loss

Key observation:
$\operatorname{Err}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, u_{i}, \tilde{Z}}\left[(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)\right]=\frac{2}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \varepsilon_{i}}\left[\varepsilon_{i} L_{i}^{+}\right]$, where $\varepsilon_{i}=(-1)^{\bar{U}_{i}}$.

Generalization Bounds via Single Loss

Key observation:
$\operatorname{Err}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, u_{i}, \tilde{Z}}\left[(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)\right]=\frac{2}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \varepsilon_{i}}\left[\varepsilon_{i} L_{i}^{+}\right]$, where $\varepsilon_{i}=(-1)^{\bar{U}_{i}}$.
Recall that $\Re_{n}(\mathcal{W}) \triangleq \mathbb{E}_{S} \mathbb{E}_{\varepsilon_{1: n}}\left[\sup _{w \in \mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \ell\left(w, Z_{i}\right)\right] \Longrightarrow \operatorname{Err} \leq 2 \Re_{n}(\mathcal{W})$.

Generalization Bounds via Single Loss

Key observation:
$\operatorname{Err}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, U_{i}, \tilde{Z}}\left[(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)\right]=\frac{2}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \varepsilon_{i}}\left[\varepsilon_{i} L_{i}^{+}\right]$, where $\varepsilon_{i}=(-1)^{\bar{U}_{i}}$.
Recall that $\Re_{n}(\mathcal{W}) \triangleq \mathbb{E}_{S} \mathbb{E}_{\varepsilon_{1: n}}\left[\sup _{w \in \mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \ell\left(w, z_{i}\right)\right] \Longrightarrow \operatorname{Err} \leq 2 \Re_{n}(\mathcal{W})$.

Theorem

Assume $\ell(\cdot, \cdot) \in[0,1]$, we have

$$
|\operatorname{Err}| \leq \frac{2}{n} \sum_{i=1}^{n} \sqrt{2 l\left(L_{i}^{+} ; U_{i}\right)} \leq \frac{2}{n} \sum_{i=1}^{n} \sqrt{2 l\left(f_{w}\left(X_{i}^{+}\right) ; U_{i} \mid \widetilde{Z}\right)}
$$

Bounds only depend on a single column of \widetilde{Z}; Still easy-to-compute.

Fast-Rate MI Bound

Consider the weighted generalization error, $\operatorname{Err}_{C_{1}} \triangleq L_{\mu}-\left(1+C_{1}\right) L_{n}$.

Fast-Rate MI Bound

Consider the weighted generalization error, $\operatorname{Err}_{C_{1}} \triangleq L_{\mu}-\left(1+C_{1}\right) L_{n}$. \Longrightarrow widely used in the PAC-Bayes literature.

Fast-Rate MI Bound

Consider the weighted generalization error, $\operatorname{Err}_{C_{1}} \triangleq L_{\mu}-\left(1+C_{1}\right) L_{n}$. \Longrightarrow widely used in the PAC-Bayes literature.

Lemma

The weighted generalization error can be rewritten as

$$
\operatorname{Err}_{C_{1}}=\frac{2+C_{1}}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \tilde{\varepsilon}_{i}}\left[\tilde{\varepsilon}_{i} L_{i}^{+}\right]
$$

where $\tilde{\varepsilon}_{i}=(-1)^{\bar{U}_{i}}-\frac{C_{1}}{C_{1}+2}$ is a shifted Rademacher variable with mean $-\frac{C_{1}}{C_{1}+2}$.

Fast-Rate MI Bound

On Machine Learning

Theorem
Let $\ell(\cdot, \cdot) \in[0,1]$. There exist $C_{1}, C_{2}>0$ such that

$$
\begin{align*}
& L_{\mu} \leq\left(1+C_{1}\right) L_{n}+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n}, \tag{3}\\
& L_{\mu} \leq L_{n}+\sum_{i=1}^{n} \frac{4 l\left(L_{i}^{+} ; U_{i}\right)}{n}+4 \sqrt{\sum_{i=1}^{n} \frac{L_{n} I\left(L_{i}^{+} ; U_{i}\right)}{n}} . \tag{4}
\end{align*}
$$

Fast-Rate MI Bound

Theorem

Let $\ell(\cdot, \cdot) \in[0,1]$. There exist $C_{1}, C_{2}>0$ such that

$$
\begin{align*}
& L_{\mu} \leq\left(1+C_{1}\right) L_{n}+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} \tag{3}\\
& L_{\mu} \leq L_{n}+\sum_{i=1}^{n} \frac{4 I\left(L_{i}^{+} ; U_{i}\right)}{n}+4 \sqrt{\sum_{i=1}^{n} \frac{L_{n} I\left(L_{i}^{+} ; U_{i}\right)}{n}} . \tag{4}
\end{align*}
$$

Faster Rate than Square-Root based Bound

If $L_{n} \rightarrow 0$, then (3)(4) vanish with a faster rate.

Variance Based MI Bound

Inspired by [Seldin et al., 2012, Tolstikhin and Seldin, 2013],

Definition (γ-Variance)

For any $\gamma \in(0,1), \gamma$-variance for a learning algorithm is defined as

$$
V(\gamma) \triangleq \mathbb{E}_{W, S}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(W, Z_{i}\right)-(1+\gamma) L_{S}(W)\right)^{2}\right]
$$

Variance Based MI Bound

Inspired by [Seldin et al., 2012, Tolstikhin and Seldin, 2013],

Definition (γ-Variance)

For any $\gamma \in(0,1), \gamma$-variance for a learning algorithm is defined as

$$
V(\gamma) \triangleq \mathbb{E}_{W, S}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(W, Z_{i}\right)-(1+\gamma) L_{S}(W)\right)^{2}\right]
$$

Lemma

Under the zero-one loss assumption, we have $V(\gamma)=L_{n}-\left(1-\gamma^{2}\right) \mathbb{E}_{W, S}\left[L_{S}^{2}(W)\right]$.

Variance Based MI Bound

Lemma

For any $C_{1}>0$, we have $\operatorname{Err}-C_{1} V(\gamma) \leq \frac{2+C_{1} \gamma^{2}}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \tilde{\varepsilon}_{i}}\left[\tilde{\varepsilon}_{i} L_{i}^{+}\right]$, where $\tilde{\varepsilon}_{i}=\varepsilon_{i}-\frac{C_{1} \gamma^{2}}{C_{1} \gamma^{2}+2}$ is the shifted Rademacher variable with mean $-\frac{C_{1} \gamma^{2}}{C_{1} \gamma^{2}+2}$.

Variance Based MI Bound

Lemma

For any $C_{1}>0$, we have $\operatorname{Err}-C_{1} V(\gamma) \leq \frac{2+C_{1} \gamma^{2}}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \tilde{\varepsilon}_{i}}\left[\tilde{\varepsilon}_{i} L_{i}^{+}\right]$, where $\tilde{\varepsilon}_{i}=\varepsilon_{i}-\frac{C_{1} \gamma^{2}}{C_{1} \gamma^{2}+2}$ is the shifted Rademacher variable with mean $-\frac{C_{1} \gamma^{2}}{C_{1} \gamma^{2}+2}$.

Theorem

Assume $\ell(\cdot, \cdot) \in\{0,1\}, \gamma \in(0,1)$. Then, there exist $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\operatorname{Err} \leq C_{1} V(\gamma)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{n C_{2}} \tag{5}
\end{equation*}
$$

Variance Based MI Bound

Compared with previous fast-rate bound:

$$
\begin{aligned}
& L_{\mu} \leq\left(1+C_{1}\right) L_{n}+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n}, \\
& \operatorname{Err} \leq C_{1} V(\gamma)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{n C_{2}} \\
& \Longrightarrow L_{\mu} \leq\left(1+C_{1}\right) L_{n}-C_{1}\left(1-\gamma^{2}\right) \mathbb{E}_{W, S}\left[L_{S}^{2}(W)\right]+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} .
\end{aligned}
$$

Variance Based MI Bound

Compared with previous fast-rate bound:

$$
\begin{aligned}
& L_{\mu} \leq\left(1+C_{1}\right) L_{n}+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n}, \\
& \operatorname{Err} \leq C_{1} V(\gamma)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{n C_{2}} \\
& \Longrightarrow L_{\mu} \leq\left(1+C_{1}\right) L_{n}-C_{1}\left(1-\gamma^{2}\right) \mathbb{E}_{W, S}\left[L_{S}^{2}(W)\right]+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} \text {. }
\end{aligned}
$$

- $L_{n}=0 \rightarrow V(\gamma)=0$, but $L_{n}=0 \nleftarrow V(\gamma)=0$;
- For the fixed C_{1} and C_{2}, variance-based bound is tighter than the previous bound with the gap being at least $C_{1}\left(1-\gamma^{2}\right) \mathbb{E}_{W, S}\left[L_{S}^{2}(W)\right]$.

Sharpness Based MI Bound

Inspired by Yang et al. [2019],
Definition (λ-Sharpness)
For any $\lambda \in(0,1)$, the " λ-sharpness" at position i of the training set is defined as

$$
F_{i}(\lambda) \triangleq \mathbb{E}_{W, z_{i}}\left[\ell\left(W, z_{i}\right)-(1+\lambda) \mathbb{E}_{W \mid z_{i}} \ell\left(W, z_{i}\right)\right]^{2}
$$

Sharpness Based MI Bound

Inspired by Yang et al. [2019],

Definition (λ-Sharpness)

For any $\lambda \in(0,1)$, the " λ-sharpness" at position i of the training set is defined as

$$
F_{i}(\lambda) \triangleq \mathbb{E}_{W, z_{i}}\left[\ell\left(W, z_{i}\right)-(1+\lambda) \mathbb{E}_{W \mid z_{i}} \ell\left(W, z_{i}\right)\right]^{2}
$$

Lemma

Assume $\ell(\cdot, \cdot) \in\{0,1\}$, we have $F_{i}(\lambda)=\mathbb{E}_{W, Z_{i}}\left[\ell\left(W, Z_{i}\right)\right]-\left(1-\lambda^{2}\right) \mathbb{E}_{Z_{i}}\left[\mathbb{E}_{W \mid Z_{i}}^{2} \ell\left(W, Z_{i}\right)\right]$.

Sharpness Based MI Bound

Lemma

Let $F(\lambda)=\frac{1}{n} \sum_{i=1}^{n} F_{i}(\lambda)$. For any $C_{1}>0$, we have

$$
\operatorname{Err}-C_{1} F(\lambda)=\frac{C_{1}+2}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, U_{i}}\left[\tilde{\varepsilon}_{i} L_{i}^{+}-\frac{C_{1}\left(1-\lambda^{2}\right)}{C_{1}+2} \hat{\varepsilon}_{i} h\left(U_{i}\right)\right],
$$

where $\tilde{\varepsilon}_{i}=\varepsilon_{i}-\frac{C_{1}}{C_{1}+2}$ and $\hat{\varepsilon}_{i}=\varepsilon_{i}-1$ are the shifted Rademacher variables, and $h\left(U_{i}\right)=\mathbb{E}_{\widetilde{z}_{i}^{+} \mid U_{i}}\left[\mathbb{E}_{L_{i}^{+}}^{2} \widetilde{z}_{i}^{+}, U_{i} L_{i}^{+}\right]$.

Sharpness Based MI Bound

Theorem

Assume $\ell(\cdot, \cdot) \in\{0,1\}, \lambda \in(0,1)$. Then, there exist $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\operatorname{Err} \leq C_{1} F(\lambda)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} . \tag{6}
\end{equation*}
$$

Sharpness Based MI Bound

Theorem

Assume $\ell(\cdot, \cdot) \in\{0,1\}, \lambda \in(0,1)$. Then, there exist $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\operatorname{Err} \leq C_{1} F(\lambda)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} . \tag{6}
\end{equation*}
$$

- $L_{n}=0 \rightarrow F(\lambda)=0$, but $L_{n}=0 \nleftarrow F(\lambda)=0$;
- Sharpness bound can be further bounded:
$L_{\mu} \leq\left(1+C_{1}\right) L_{n}-C_{1}\left(1-\lambda^{2}\right) L_{n}^{2}+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n}$.
For any fixed C_{1} and C_{2}, sharpness based bound is tighter than the previous fast-rate bound.

Experiments

We will compare

- Uncondi.: $\frac{1}{n} \sum_{i=1}^{n} \sqrt{2 l\left(\Delta L_{i} ; U_{i}\right)}$
- Disint.: $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\tilde{z}} \sqrt{2 \widetilde{Z}\left(\Delta L_{i} ; U_{i}\right)}$
- Binary KL: Hellström and Durisi [2022]
- Weighted: $\sum_{i=1}^{n} \frac{4 /\left(L_{i}^{+} ; U_{i}\right)}{n}+4 \sqrt{\sum_{i=1}^{n} \frac{L_{n}\left(L_{i}^{+} ; U_{i}\right)}{n}}$
- Variance: $C_{1} V(\gamma)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{n C_{2}}$
- Sharpness: $C_{1} F(\lambda)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n}$

Experiments on Synthetic Gaussian Dataset ICML

(a) $|\mathcal{Y}|=2$ (Realizable)

(b) $|\mathcal{Y}|=2$ (Non-Separable)

Figure: Comparison of bounds on the binary classification task with linear classifier. (a) Binary classification with a separable μ. (b) Binary classification with a non-separable μ.

Experiments on Synthetic Gaussian Dataset ICML

(a) $|\mathcal{Y}|=10$ (Realizable)

(b) $|\mathcal{Y}|=10$ (Non-Separable)

Figure: Comparison of bounds on the ten-class classification task with linear classifier. (a) Ten-class classification with a separable μ. (b) Ten-class classification with a non-separable μ.

Experiments on Real datasets

(a) CNN on MNIST

(b) ResNet on CIFAR10

(c) SGLD (MNIST)

Figure: Comparison of bounds on two real datasets, MNIST ("4 vs 9") and CIFAR10.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3(Nov): 463-482, 2002.

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learning algorithms. Advances in Neural Information Processing Systems, 2017.
Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mutual information. In Conference on Learning Theory. PMLR, 2020.
Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, and Aram Galstyan. Information-theoretic generalization bounds for black-box learning algorithms. In Advances in Neural Information Processing Systems, 2021.

References II

Fredrik Hellström and Giuseppe Durisi. A new family of generalization bounds using samplewise evaluated CMI. In Advances in Neural Information Processing Systems, 2022.

Yevgeny Seldin, François Laviolette, Nicolo Cesa-Bianchi, John Shawe-Taylor, and Peter Auer. Pac-bayesian inequalities for martingales. IEEE Transactions on Information Theory, 58(12):7086-7093, 2012.

Ilya 0 Tolstikhin and Yevgeny Seldin. Pac-bayes-empirical-bernstein inequality. Advances in Neural Information Processing Systems, 26, 2013.
Jun Yang, Shengyang Sun, and Daniel M Roy. Fast-rate pac-bayes generalization bounds via shifted rademacher processes. Advances in Neural Information Processing Systems, 32, 2019.

The End

[^0]: ${ }^{1}$ A random variable X is R-subgaussian if for any $\rho, \log \mathbb{E} \exp (\rho(X-\mathbb{E} X)) \leq \rho^{2} R^{2} / 2$.

[^1]: ${ }^{1}$ A random variable X is R-subgaussian if for any $\rho, \log \mathbb{E} \exp (\rho(X-\mathbb{E} X)) \leq \rho^{2} R^{2} / 2$.

[^2]: ${ }^{1}$ A random variable X is R-subgaussian if for any $\rho, \log \mathbb{E} \exp (\rho(X-\mathbb{E} X)) \leq \rho^{2} R^{2} / 2$.

