On *f*-Divergence Principled Domain Adaptation: An Improved Framework

Ziqiao Wang¹ Yongyi Mao¹

¹University of Ottawa

June 4, 2024

Outline

Problem Setup

- Previous Divergence-based Domain Learning Theory
- \bigcirc Improved f-divergence Guided UDA Theory

Outline

Problem Setup

2 Previous Divergence-based Domain Learning Theory

3 Improved f-divergence Guided UDA Theory

Domain Adaptation

- \triangleright Given data from a source domain, i.e. $\{X_i, Y_i\} \stackrel{i.i.d.}{\sim} \mu$
- \triangleright Obtain a model for a target domain, i.e. $\{X,Y\} \sim \nu$
- ▶ Practical Goal: Efficiently transfer ML models between related populations at low cost.

Data space: \mathcal{X} × \mathcal{Y} ; Hypothesis space: \mathcal{H} \triangleq {h : \mathcal{X} → \mathcal{Y} };

- Data space: $\mathcal{X} \times \mathcal{Y}$; Hypothesis space: $\mathcal{H} \triangleq \{h : \mathcal{X} \rightarrow \mathcal{Y}\}$;
- Unsupervised Domain Adaptation (UDA):
 - \triangleright Unknown distributions μ and ν
 - \triangleright Labeled source-domain sample $S = \{X_i, Y_i\}_{i=1}^n \sim \mu^{\otimes n}$
 - ightarrow Unlabelled target-domain sample $\mathcal{T} = \{X_j\}_{j=1}^m {\sim} \nu^{\otimes m}$
 - ▶ **Target**: find a hypothesis $h \in \mathcal{H}$ "works well" on ν .

- Data space: $\mathcal{X} \times \mathcal{Y}$; Hypothesis space: $\mathcal{H} \triangleq \{h : \mathcal{X} \rightarrow \mathcal{Y}\}$;
- Unsupervised Domain Adaptation (UDA):
 - \triangleright Unknown distributions μ and ν
 - \triangleright Labeled source-domain sample $S = \{X_i, Y_i\}_{i=1}^n \sim \mu^{\otimes n}$
 - \triangleright Unlabelled target-domain sample $\mathcal{T} = \{X_j\}_{j=1}^m \sim \nu^{\otimes m}$
 - ▶ **Target**: find a hypothesis $h \in \mathcal{H}$ "works well" on ν .
- ▶ Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_0^+$.
- ▶ Target error: $R_{\nu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \nu} [\ell(h(X),Y)]$, same way for the source error, $R_{\mu}(h)$.

- Data space: \mathcal{X} × \mathcal{Y} ; Hypothesis space: \mathcal{H} \triangleq {h : \mathcal{X} → \mathcal{Y} };
- Unsupervised Domain Adaptation (UDA):
 - \triangleright Unknown distributions μ and ν
 - \triangleright Labeled source-domain sample $\mathcal{S} = \{X_i, Y_i\}_{i=1}^n \sim \mu^{\otimes n}$
 - \triangleright Unlabelled target-domain sample $\mathcal{T} = \{X_j\}_{j=1}^m \sim \nu^{\otimes m}$
 - ▶ **Target**: find a hypothesis $h \in \mathcal{H}$ "works well" on ν .
- ▷ Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_0^+$.
- ▶ Target error: $R_{\nu}(h) \triangleq \mathbb{E}_{(X,Y) \sim \nu} [\ell(h(X),Y)]$, same way for the source error, $R_{\mu}(h)$.
- \triangleright We use $\ell(h,h')$ to denote $\ell(h(x),h'(x))$, i.e. the disagreement of h and h' on x.

Outline

Problem Setup

Previous Divergence-based Domain Learning Theory

3 Improved f-divergence Guided UDA Theory

H-specified Discrepancy

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

\mathcal{H} -specified Discrepancy

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

- ▶ Assumptions:
 - ▶ Triangle property: $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ for any $y_1, y_2, y_3 \in \mathcal{Y}$.
 - \triangleright Bounded loss: e.g., $\ell \in [0,1]$

\mathcal{H} -specified Discrepancy

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

- ▶ Assumptions:
 - ▶ Triangle property: $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ for any $y_1, y_2, y_3 \in \mathcal{Y}$.
 - \triangleright Bounded loss: e.g., $\ell \in [0,1]$

Then, for any $h \in \mathcal{H}$,

$$R_{\nu}(h) \leq R_{\mu}(h) + d_{\mathcal{H}\Delta\mathcal{H}}(\mu, \nu) + \lambda^*,$$

where $\lambda^* = \min_{h^* \in \mathcal{H}} R_{\nu}(h^*) + R_{\mu}(h^*)$.

H-specified Discrepancy

By Ben-David et al. [2006, 2010], Mansour et al. [2009]:

$$d_{\mathcal{H}\Delta\mathcal{H}}(\mu,\nu) \triangleq \sup_{h,h'\in\mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\ell(h,h') \right] |.$$

- ▶ Assumptions:
 - ▶ Triangle property: $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ for any $y_1, y_2, y_3 \in \mathcal{Y}$.
 - $\quad \triangleright \ \, \text{Bounded loss: e.g., } \ell \in [0,1]$

Then, for any $h \in \mathcal{H}$,

$$R_{\nu}(h) \leq R_{\mu}(h) + d_{\mathcal{H}\Delta\mathcal{H}}(\mu, \nu) + \lambda^*,$$

where $\lambda^* = \min_{h^* \in \mathcal{H}} R_{\nu}(h^*) + R_{\mu}(h^*)$.

Can we extend $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence?

From $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence

ho f-divergence: $D_{\phi}(P||Q) \triangleq \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where ϕ is convex and $\phi(1) = 0$.

From $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence

- ho f-divergence: $D_{\phi}(P||Q) \triangleq \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where ϕ is convex and $\phi(1) = 0$.
- Its variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right].$$

From $\mathcal{H}\Delta\mathcal{H}$ -divergence to \mathcal{H} -specified f-divergence

- ho f-divergence: $D_{\phi}(P||Q) \triangleq \mathbb{E}_{Q}\left[\phi\left(\frac{dP}{dQ}\right)\right]$, where ϕ is convex and $\phi(1) = 0$.
- Its variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right].$$

▶ By Acuna et al. [2021]:

$$\widetilde{\mathbf{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) \triangleq \sup_{h' \in \mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\phi^*(\ell(h,h')) \right] |.$$

⇒ Additional absolute value function added.

Gap between Theory and Algorithm in Acuna et al. [2021]

$$\widetilde{\mathbf{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) \triangleq \sup_{h' \in \mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\phi^*(\ell(h,h')) \right] |.$$

▶ Theory (Target Error Bound):

$$R_{\nu}(h) \le R_{\mu}(h) + \widetilde{\mathcal{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) + \lambda^*,$$

Gap between Theory and Algorithm in Acuna et al. [2021]

$$\widetilde{\mathbf{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) \triangleq \sup_{h' \in \mathcal{H}} |\mathbb{E}_{\mu} \left[\ell(h,h') \right] - \mathbb{E}_{\nu} \left[\phi^*(\ell(h,h')) \right] |.$$

▶ Theory (Target Error Bound):

$$R_{\nu}(h) \leq R_{\mu}(h) + \widetilde{\mathcal{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu) + \lambda^*,$$

 \triangleright *f*-Domain Adversarial Learning (*f*-DAL) Algorithm:

$$\min_{h} R_{\hat{\mu}}(h) + \underbrace{\max_{h'} \mathbb{E}_{\hat{\mu}} \left[\ell(h, h') \right] - \mathbb{E}_{\hat{\nu}} \left[\phi^*(\ell(h, h')) \right]}_{d(\hat{\mu}, \hat{\nu}; h)}.$$

 $\Longrightarrow d(\hat{\mu},\hat{\nu};h)$ drops the absolute value function compared with $\widetilde{\mathrm{D}}_{\phi}^{h,\mathcal{H}}(\mu||\nu)$

Overestimation by Absolute Value Function

Figure 1: The y-axis is the estimated corresponding f-divergence and the x-axis is the number of iterations.

 \triangleright f-DAL algorithm fails if the absolute value function is added.

Outline

Problem Setup

2 Previous Divergence-based Domain Learning Theory

3 Improved f-divergence Guided UDA Theory

Our work: New f-Domain Discrepancy (f-DD)

- ▶ Using "linear transformation" instead of the absolute value function:
 - ▶ Original variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right]. \tag{1}$$

 \triangleright Reparameterization of $g \to tg + \alpha$ (i.e. linear transformation):

$$D_{\phi}(P||Q) = \sup_{g,t,\alpha} \mathbb{E}_{\theta \sim P} \left[tg(\theta) + \alpha \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(tg(\theta) + \alpha) \right]. \tag{2}$$

Eq. (2) is tighter than Eq. (1)

Our work: New f-Domain Discrepancy (f-DD)

- ▶ Using "linear transformation" instead of the absolute value function:
 - ▶ Original variational formula:

$$D_{\phi}(P||Q) = \sup_{g \in \mathcal{G}} \mathbb{E}_{\theta \sim P} \left[g(\theta) \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(g(\theta)) \right]. \tag{1}$$

▶ Reparameterization of $g \to tg + \alpha$ (i.e. linear transformation):

$$D_{\phi}(P||Q) = \sup_{g,t,\alpha} \mathbb{E}_{\theta \sim P} \left[tg(\theta) + \alpha \right] - \mathbb{E}_{\theta \sim Q} \left[\phi^*(tg(\theta) + \alpha) \right]. \tag{2}$$

Eq. (2) is tighter than Eq. (1)

 \triangleright Our f-DD:

$$D_{\phi}^{h,\mathcal{H}}(\nu||\mu) \triangleq \sup_{t \in \mathbb{R}, h'} \mathbb{E}_{\nu} \left[t\ell(h, h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h, h') + \alpha) - \alpha \right].$$

f-DD-based Theory

$$D_{\phi}^{h,\mathcal{H}}(\nu||\mu) \triangleq \sup_{t \in \mathbb{R}, h'} \mathbb{E}_{\nu} \left[t\ell(h, h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h, h') + \alpha) - \alpha \right].$$

▶ Target Error Bound: For any $h \in \mathcal{H}$,

$$R_{\nu}(h) \le R_{\mu}(h) + \inf_{t \ge 0} \frac{D_{\phi}^{h,\mathcal{H}}(\nu||\mu) + K_{\mu}(t)}{t} + \lambda^*,$$
 (3)

where $K_{\mu}(t)$ is the upper bound for the "cumulant generating function (CGF)" for μ .

 \triangleright If ϕ is twice differentiable and ϕ'' is monotone, then

$$R_{\nu}(h) \le R_{\mu}(h) + \sqrt{\frac{2}{\phi''(1)}} D_{\phi}^{h,\mathcal{H}}(\nu||\mu) + \lambda^*.$$
 (4)

- ▶ Restricted Hypothesis Space (Rashomon set): $\mathcal{H}_r \triangleq \{h \in \mathcal{H} | R_{\mu}(h) \leq r\}$
- ▶ Localized f-DD: For a given $h \in \mathcal{H}_{r_1}$

$$D_{\phi}^{h,\mathcal{H}_r}(\nu||\mu) \triangleq \sup_{h' \in \mathcal{H}_r, t > 0} \mathbb{E}_{\nu} \left[t\ell(h, h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h, h') + \alpha) - \alpha \right].$$

- ▶ Restricted Hypothesis Space (Rashomon set): $\mathcal{H}_r \triangleq \{h \in \mathcal{H} | R_{\mu}(h) \leq r\}$
- ▶ Localized f-DD: For a given $h \in \mathcal{H}_{r_1}$

$$D_{\phi}^{h,\mathcal{H}_r}(\nu||\mu) \triangleq \sup_{h' \in \mathcal{H}_r, t > 0} \mathbb{E}_{\nu} \left[t\ell(h, h') \right] - \inf_{\alpha \in \mathbb{R}} \mathbb{E}_{\mu} \left[\phi^*(t\ell(h, h') + \alpha) - \alpha \right].$$

▶ Target Error Bound:

For any h, h' and $C_1, C_2 > 0$ satisfying

$$\inf_{\alpha} \mathbb{E}_{\mu} \left[\phi^* (C_1 \ell(h, h') + \alpha) - \alpha \right] \leq C_1 (1 + C_2) \mathbb{E}_{\mu} \left[\ell(h, h') \right],$$
then:

$$R_{\nu}(h) \le R_{\mu}(h) + \frac{1}{C_1} \mathcal{D}_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*,$$

where $\lambda_r^* = \min_{h^* \in \mathcal{H}_r} R_\mu(h^*) + R_\nu(h^*)$ and $R_\mu^r(h) = \sup_{h' \in \mathcal{H}_r} \mathbb{E}_\mu \left[\ell(h, h') \right]$.

▶ Target Error Bound:

$$R_{\nu}(h) \leq R_{\mu}(h) + \frac{1}{C_1} D_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*.$$

- $ightharpoonup R_{\mu}^{r}(h) \leq r + r_1 \Longrightarrow \operatorname{Small} r, r_1$
- ightharpoonup If $r < \lambda^*$, then it's possible that $\lambda_r^* > \lambda^* \Longrightarrow \text{Large } r$

▶ Target Error Bound:

$$R_{\nu}(h) \leq R_{\mu}(h) + \frac{1}{C_1} D_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*.$$

- $ightharpoonup R^r_{\mu}(h) \le r + r_1 \Longrightarrow \operatorname{Small} r, r_1$
- ightharpoonup If $r < \lambda^*$, then it's possible that $\lambda_r^* > \lambda^* \Longrightarrow \operatorname{Large} r$
- ▷ Localized KL-DD: $\inf_{\alpha} \mathbb{E}_{\mu} \left[\phi^* (C_1 \ell(h, h') + \alpha) \alpha \right] \leq C_1 (1 + C_2) \mathbb{E}_{\mu} \left[\ell(h, h') \right]$

▶ Target Error Bound:

$$R_{\nu}(h) \leq R_{\mu}(h) + \frac{1}{C_1} \mathcal{D}_{\phi}^{h, \mathcal{H}_r}(\nu||\mu) + C_2 R_{\mu}^r(h) + \lambda_r^*.$$

- $ightharpoonup R^r_{\mu}(h) \le r + r_1 \Longrightarrow \operatorname{Small} r, r_1$
- ightharpoonup If $r < \lambda^*$, then it's possible that $\lambda_r^* > \lambda^* \Longrightarrow \operatorname{Large} r$
- Description Localized KL-DD: $\inf_{\alpha} \mathbb{E}_{\mu} \left[\phi^*(C_1 \ell(h, h') + \alpha) \alpha \right] \le C_1 (1 + C_2) \mathbb{E}_{\mu} \left[\ell(h, h') \right]$ $\Leftarrow \begin{cases} C_1 > 0 \\ C_2 ∈ (0, 1) \\ \left(e^{C_1} C_1 1 \right) \left(1 + C_2^2 \min\{r_1 + r, 1\} \right) \le C_1 C_2 \end{cases}$

Generalization Bound via Localized f-DD

Theorem (informal)

For any $h \in \mathcal{H}_{r_1}$, w.p. at least $1 - \delta$, we have

$$R_{\nu}(h) \leq R_{\hat{\mu}}(h) + \frac{D_{\text{KL}}^{h,\mathcal{H}_r}(\hat{\nu}||\hat{\mu})}{C_1} + C_2 R_{\mu}^r(h) + \mathcal{O}\left(\frac{\log(1/\delta)}{n} + \frac{\log(1/\delta)}{m}\right) + \mathcal{O}\left(\sqrt{\frac{(r_1 + r)\log(1/\delta)}{n}} + \sqrt{\frac{r\log(1/\delta)}{m}}\right) + \text{Complexity.} + \lambda_r^*.$$

Small $r, r_1 \Longrightarrow$ fast decaying rate (i.e. $\mathcal{O}\left(\frac{1}{n} + \frac{1}{m}\right)$).

Experiments

- ▶ Three specific discrepancy measures:
 - $\quad \quad \triangleright \ \, \text{KL-DD}, \, \chi^2\text{-DD}, \, \underline{\text{the weighted Jeffereys-DD:}} \, \gamma_1 D_{\text{KL}}(\hat{\mu}||\hat{\nu}) + \gamma_2 D_{\text{KL}}(\hat{\nu}||\hat{\mu})$
- ▷ Objective Function: Bounded ℓ → Unbounded $\hat{\ell}$ (Optimizing over t may not be necessary)

$$\min_{h} R_{\hat{\mu}}(h) + \max_{h'} \left\{ \mathbb{E}_{\hat{\mu}} \left[\hat{\ell}(h, h') \right] - \inf_{\alpha} \mathbb{E}_{\hat{\nu}} \left[\phi^*(\hat{\ell}(h, h') + \alpha) - \alpha \right] \right\}.$$

Table 1: Accuracy (%) on UDA Classification Tasks

Method	Office-31	Office-Home	Digits
Acuna et al. [2021]	89.5	68.5	96.3
Our weighted Jeffereys-DD	90.1	70.2	97.1

Summary

- \triangleright Significant gap between previous f-divergence-based domain learning theory and algorithm in Acuna et al. [2021]
- \triangleright We propose new f-divergence-based domain learning theory
- ▶ We further improve the target error bound by the localization technique
- Dur weighted Jeffereys-DD outperforms previous methods
- For further details, including optimization on t, t-SNE visualization, and more, please refer to our paper available at: https://arxiv.org/pdf/2402.01887

References I

- Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain adaptation. *Advances in neural information processing systems*, 19, 2006.
- Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory of learning from different domains. *Machine Learning*, 79(1-2):151–175, 2010.
- Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In *The 22nd Conference on Learning Theory*, 2009.
- David Acuna, Guojun Zhang, Marc T Law, and Sanja Fidler. f-domain adversarial learning: Theory and algorithms. In *International Conference on Machine Learning*, pages 66–75. PMLR, 2021.