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Background & Contributions

• Traditional generalization bounds (e.g., VC-dim, Rademacher complexity ...) are
vacuous in DL.

• Information-theoretic generalization bounds can be non-vacuous since they
are both distribution-dependent and algorithm-dependent bounds.

• Our contribution: New Conditional Mutual Information (CMI) bounds which are
either theoretically or empirically tighter than previous CMI bounds for the
same supersample setting.
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Supersample Setting

Let Z̃ drawn i.i.d. from µ and U = (U1,U2, . . . ,Un)
T ∼ Unif({0, 1}n).

Supersample Z̃ =

Z̃1,0 Z̃1,1
Z̃2,0 Z̃2,1
...

...
Z̃n,0 Z̃n,1

U=⇒ S =

Z̃1,U1
Z̃2,U2
...

Z̃n,Un

A=⇒ W

Err ≜ EW,S

[
EZ∼µ[ℓ(w, Z)]−

1

n

n∑
i=1

ℓ(w, Zi)

]
=

1

n

n∑
i=1

EW,Ui ,̃Z

[
(−1)Ui

(
ℓ(W, Z̃i,1)− ℓ(W, Z̃i,0)

)]

Lemma (Steinke and Zakynthinou [2020])

Assume the loss is bounded between [0, 1], we have |Err| ≤
√

2I(W;U|̃Z)
n .
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CMI, f-CMI and e-CMI

• Using the superscripts+ and− to replace the 0 and 1: e.g, let Z̃i = (Z̃+i , Z̃
−
i )

• Li ≜ (L+i , L
−
i ) = (ℓ(W, Z̃+i ), ℓ(W, Z̃−i ))

• ∆Li = L−i − L+i

Z̃+1 Z̃−1
Z̃+2 Z̃−2
...

...
Z̃+n Z̃−n

fW=⇒

fW(X̃+1 ) fW(X̃−1 )
fW(X̃+2 ) fW(X̃−2 )

...
...

fW(X̃+n ) fW(X̃−n )

ℓ=⇒

ℓ(W, Z̃+1 ) ℓ(W, Z̃−1 )
ℓ(W, Z̃+2 ) ℓ(W, Z̃−2 )

...
...

ℓ(W, Z̃+n ) ℓ(W, Z̃−n )

∆=⇒

∆L1
∆L2
...

∆Ln

I(W;Ui|Z̃)︸ ︷︷ ︸
CMI

≥ I(fW(Z̃i);Ui|Z̃)︸ ︷︷ ︸
f−CMI [Harutyunyan et al., 2021]

≥ I(Li;Ui|Z̃)︸ ︷︷ ︸
e−CMI [Hellström and Durisi, 2022]

≥ I(∆Li;Ui|Z̃)︸ ︷︷ ︸
ld−CMI (Ours)
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Generalization Bounds via Loss Difference

Theorem
Assume the loss is bounded between [0, 1], we have

|Err| ≤1

n

n∑
i=1

EZ̃

√
2ĨZ(∆Li;Ui) ≤

1

n

n∑
i=1

√
2I(∆Li;Ui|Z̃), (1)

|Err| ≤1

n

n∑
i=1

√
2I(∆Li;Ui). (2)

Estimating I(W;Ui|Z̃i) vs I(∆Li;Ui):
• W is a high-dimensional R.V.
• ∆Li is an one-dimensional R.V. =⇒ Easy-to-Compute!
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A Communication View of Generalization

0

1

1
1− αi − ϵi

ϵi

0

αi

αi

−1
1− αi − ϵi

ϵi

Figure: Channel from Ui to∆Li. Zero-one
loss assumed.

Theorem
Under zero-one loss and for any interpolating
algorithmA, I(∆Li;Ui) = (1− αi) ln 2 nats for each
i, and |Err| = Lµ =

∑n
i=1

I(∆Li;Ui)
n ln 2 .

=⇒ Generalization error is exactly determined by
the communication rate over the channel in the
figure averaged over all such channels.
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Fast-Rate MI Bound

Key observation:
Err = 1

n

∑n
i=1 EW,Ui ,̃Z

[
(−1)Ui

(
ℓ(W, Z̃+i )− ℓ(W, Z̃−i )

)]
= 2

n

∑n
i=1 EL+i ,εi

[
εiL+i

]
, where

εi = (−1)Ui is the Rademacher variable.

Lemma
Consider the weighted generalization error, ErrC1 ≜ Lµ − (1 + C1)Ln. We have

ErrC1 =
2 + C1

n

n∑
i=1

EL+i ,ε̃i

[
ε̃iL+i

]
,

where ε̃i = (−1)Ui − C1
C1+2 is a shifted Rademacher variable with mean− C1

C1+2 .
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Fast-Rate MI Bound

Theorem
Let ℓ(·, ·) ∈ [0, 1]. There exist C1,C2 > 0 such that

Lµ ≤(1 + C1)Ln +
n∑

i=1

I(L+i ;Ui)

C2n
, (3)

Lµ ≤Ln +
n∑

i=1

4I(L+i ;Ui)

n
+ 4

√√√√ n∑
i=1

LnI(L+i ;Ui)

n
. (4)

Faster Rate than Square-Root based Bound

If Ln → 0, then (3)(4) vanish with a faster rate.
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Sharpness Based MI Bound

Theorem
For any λ ∈ (0, 1), the “λ-sharpness” at position i of the training set is defined as

Fi(λ) ≜ EW,Zi

[
ℓ(W, Zi)− (1 + λ)EW|Ziℓ(W, Zi)

]2
.

Let F(λ) = 1
n

∑n
i=1 Fi(λ). Assume ℓ(·, ·) ∈ {0, 1}, λ ∈ (0, 1). Then, there exist C1,C2 > 0

such that

Err ≤C1F(λ) +
n∑

i=1

I(L+i ;Ui)

C2n
. (5)

• Ln = 0 → F(λ) = 0, but Ln = 0 ↚ F(λ) = 0;
• For any fixed C1 and C2, Eq. (5) is tighter than Eq. (3).
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Experiments
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(a) CNN on MNIST
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(b) ResNet on CIFAR10
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Epochs

0.0
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Negrea et al. bound

(c) SGLD (MNIST)

Figure: Uncondi.: 1
n

∑n
i=1

√
2I(∆Li;Ui); Binary KL: Hellström and Durisi [2022]; Weighted:∑n

i=1

4I(L+i ;Ui)
n + 4

√∑n
i=1

Ln I(L
+
i ;Ui)
n ; Sharpness: C1F(λ) +

∑n
i=1

I(L+i ;Ui)
C2n

.
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Thank You!
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