Exploring Generalization in Machine Learning through Information-Theoretic Lens

IMA Annual Workshop

Ziqiao Wang Under the Supervision of Prof. Yongyi Mao

University of Ottawa

School of Electrical Engineering and Computer Science

August 5, 2023

Tighter Information-Theoretic Generalization Bounds from Supersamples (*ICML'23*)

On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications (*ICLR*'22)

Information-Theoretic Analysis of Unsupervised Domain Adaptation (ICLR '23)

References

▶ Our ultimate interest is the **testing performance** of the learned model

- ▶ Our ultimate interest is the **testing performance** of the learned model
- Generalization error/gap = testing error training error

Classical Viewpoint of Generalization

Generalization measures (e.g., VC-dim and Rademacher complexity) in classical statistical learning theory cannot explain the success of modern deep neural networks [Zhang et al., 2017].
 # of parameters > # of training data & can even perfectly fit random labels
 ⇒ high capacity

 \implies still perform well on unseen data

Generalization measures (e.g., VC-dim and Rademacher complexity) in classical statistical learning theory cannot explain the success of modern deep neural networks [Zhang et al., 2017].
 # of parameters > # of training data & can even perfectly fit random labels
 ⇒ high capacity

 \implies still perform well on unseen data

▶ Algorithm & Distribution-dependent \implies non-vacuous generalization bound

Tighter Information-Theoretic Generalization Bounds from Supersamples (ICML'23) New Conditional Mutual Information (CMI) bounds which are either theoretically or empirically tighter than previous CMI bounds for the same supersample setting.

Supersample Setting

- ▶ Let \widetilde{Z} drawn i.i.d. from μ
- Let $U = (U_1, U_2, \dots, U_n)^T \sim \text{Unif}(\{0, 1\}^n).$
- Learning algorithm $\mathcal{A}: \mathcal{Z}^n \to \mathcal{W}$
- ▶ Err $\triangleq \mathbb{E}_{W,S} \left[\mathbb{E}_{Z \sim \mu} [\ell(w, Z)] \frac{1}{n} \sum_{i=1}^{n} \ell(w, Z_i) \right]$

8

Supersample Setting

- ▶ Let \widetilde{Z} drawn i.i.d. from μ
- Let $U = (U_1, U_2, \dots, U_n)^T \sim \text{Unif}(\{0, 1\}^n).$
- Learning algorithm $\mathcal{A}: \mathcal{Z}^n \to \mathcal{W}$

• Err
$$\triangleq \mathbb{E}_{W,S} \left[\mathbb{E}_{Z \sim \mu} [\ell(w, Z)] - \frac{1}{n} \sum_{i=1}^{n} \ell(w, Z_i) \right]$$

Lemma 1 (Steinke and Zakynthinou [2020])

Assume the loss is bounded between [0,1], we have $|\text{Err}| \leq \sqrt{\frac{2I(W;U|\tilde{Z})}{n}}.$

CMI, f-CMI and e-CMI

- ▶ $F_i^+ := f_W(\tilde{X}_i^+), \ F_i^- := f_W(\tilde{X}_i^-),$ $F_i := (F_i^+, F_i^-)$ \Rightarrow f-CMI Bound: $|\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{I(F_i; U_i | \widetilde{Z})}$ [Harutyunyan et al., 2021 $\blacktriangleright L_i^+ := \ell(W, \widetilde{Z}_i^+), \ L_i^- := \ell(W, \widetilde{Z}_i^-),$ $L_i := (L_i^+, L_i^-)$ \Rightarrow e-CMI Bound: $|\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{I(L_i; U_i | \widetilde{Z})}$ [Hellström and Durisi, 2022]
- ► This paper: $\Delta L_i := L_i^- L_i^+$ \Rightarrow ld-CMI: $I(\Delta L_i; U_i | \widetilde{Z})$

Assume the loss is bounded between [0,1], we have

$$|\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\widetilde{Z}} \sqrt{2I^{\widetilde{Z}}(\Delta L_{i}; U_{i})} \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2I(\Delta L_{i}; U_{i}|\widetilde{Z})},$$
(1)
$$|\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2I(\Delta L_{i}; U_{i})}.$$
(2)

Assume the loss is bounded between [0,1], we have

$$|\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\widetilde{Z}} \sqrt{2I^{\widetilde{Z}}(\Delta L_{i}; U_{i})} \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2I(\Delta L_{i}; U_{i}|\widetilde{Z})},$$
(1)
$$|\operatorname{Err}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2I(\Delta L_{i}; U_{i})}.$$
(2)

Estimating $I(W; U_i | \tilde{Z}_i)$ vs $I(\Delta L_i; U_i)$:

 \blacktriangleright W is a high-dimensional R.V.

• ΔL_i is an one-dimensional R.V. \Longrightarrow Easy-to-Compute!

11 Ultawa

Let $\ell(\cdot, \cdot) \in [0, 1]$. There exist $C_1, C_2 > 0$ such that

$$L_{\mu} \leq (1+C_1)L_n + \sum_{i=1}^n \frac{I(L_i^+; U_i)}{C_2 n},$$

$$L_{\mu} \leq L_n + \sum_{i=1}^n \frac{4I(L_i^+; U_i)}{n} + 4\sqrt{\sum_{i=1}^n \frac{L_n I(L_i^+; U_i)}{n}}.$$
(3)
(4)

Let $\ell(\cdot, \cdot) \in [0, 1]$. There exist $C_1, C_2 > 0$ such that

$$L_{\mu} \leq (1+C_{1})L_{n} + \sum_{i=1}^{n} \frac{I(L_{i}^{+};U_{i})}{C_{2}n},$$

$$L_{\mu} \leq L_{n} + \sum_{i=1}^{n} \frac{4I(L_{i}^{+};U_{i})}{n} + 4\sqrt{\sum_{i=1}^{n} \frac{L_{n}I(L_{i}^{+};U_{i})}{n}}.$$
(3)
(3)

If $L_n \to 0$, then (3)(4) vanish with a faster rate.

For any $\lambda \in (0,1)$, the " λ -sharpness" at position i of the training set is defined as

$$F_i(\lambda) \triangleq \mathbb{E}_{W,Z_i} \left[\ell(W, Z_i) - (1 + \lambda) \mathbb{E}_{W|Z_i} \ell(W, Z_i) \right]^2.$$

Let $F(\lambda) = \frac{1}{n} \sum_{i=1}^{n} F_i(\lambda)$. Assume $\ell(\cdot, \cdot) \in \{0, 1\}$, $\lambda \in (0, 1)$. Then, there exist $C_1, C_2 > 0$ such that

$$\operatorname{Err} \leq C_1 F(\lambda) + \sum_{i=1}^n \frac{I(L_i^+; U_i)}{C_2 n}.$$
(5)

For any $\lambda \in (0,1)$, the " λ -sharpness" at position i of the training set is defined as

$$F_i(\lambda) \triangleq \mathbb{E}_{W,Z_i} \left[\ell(W, Z_i) - (1 + \lambda) \mathbb{E}_{W|Z_i} \ell(W, Z_i) \right]^2.$$

Let $F(\lambda) = \frac{1}{n} \sum_{i=1}^{n} F_i(\lambda)$. Assume $\ell(\cdot, \cdot) \in \{0, 1\}$, $\lambda \in (0, 1)$. Then, there exist $C_1, C_2 > 0$ such that

$$\operatorname{Err} \leq C_1 F(\lambda) + \sum_{i=1}^n \frac{I(L_i^+; U_i)}{C_2 n}.$$
(5)

•
$$L_n = 0 \rightarrow F(\lambda) = 0$$
, but $L_n = 0 \nleftrightarrow F(\lambda) = 0$;

For any fixed C_1 and C_2 , Eq. (5) is tighter than Eq. (3).

On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications (ICLR'22)

- New information-theoretic upper bounds for the generalization error of machine learning models trained with SGD
- ▶ New and simple regularization scheme

The generalization error of SGD is upper bounded by

$$\operatorname{Err} \leq \mathcal{O}\left(\sqrt[3]{\sum_{t=1}^{T} \frac{\mathbb{E}\left[\mathbb{V}_{t}(W_{t-1})\right]\mathbb{E}\left[\operatorname{Tr}\left(\operatorname{H}_{W_{T}}(Z)\right)\right]}{n}}\right)$$

• Gradient Dispersion: $\mathbb{V}_t(w) \triangleq \mathbb{E}_S \left[||g(w, B_t) - \mathbb{E}_{W,Z} \left[\nabla_w \ell(W, Z) \right] ||_2^2 \right]$

(6)

• We hope the empirical risk surface at w^* is flat, or insensitive to a small perturbation of w^* .

$$\min_{w} L_s(w) + \rho \mathbb{E}_{\Delta \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)} \left[L_s(w + \Delta) - L_s(w) \right],$$

where ρ is a hyper-parameter.

• Replacing the expectation above with its stochastic approximation using k realizations of Δ gives rise to the following optimization problem.

$$\min_{w} \frac{1}{b} \sum_{z \in B} \left((1-\rho)\ell(w,z) + \rho \frac{1}{k} \sum_{i=1}^{k} \left(\ell(w+\delta_i,z) \right) \right).$$

Method	SVHN	CIFAR-10	CIFAR-100	
ERM	$96.86 {\pm} 0.060$	$93.68 {\pm} 0.193$	72.16 ± 0.297	
Dropout	$97.04{\pm}0.049$	$93.78 {\pm} 0.147$	$72.28 {\pm} 0.337$	
L. S.	$96.93{\pm}0.070$	$93.71 {\pm} 0.158$	$72.51{\pm}0.179$	
Flooding	$96.85 {\pm} 0.085$	$93.74{\pm}0.145$	$72.07{\pm}0.271$	
MixUp	$96.91{\pm}0.057$	$94.52{\pm}0.112$	$73.19{\pm}0.254$	
Adv. Tr.	$97.06 {\pm} 0.091$	$93.51 {\pm} 0.130$	$70.88 {\pm} 0.145$	
AMP^1	$97.27{\pm}0.015$	$94.35 {\pm} 0.147$	$74.40{\pm}0.168$	
\mathbf{GMP}^3	97.18 ± 0.057	$94.33 {\pm} 0.094$	74.45 ± 0.256	
\mathbf{GMP}^{10}	$97.09 {\pm} 0.068$	$94.45 {\pm} 0.158$	$75.09{\pm}0.285$	

Top-1 classification accuracy acc. (%) of VGG16. We run experiments 10 times and report the mean and the standard deviation of the testing accuracy.

¹min_w $L_s(w) + \rho \max_{\delta} L_s(w + \delta) - L_s(w)$

Information-Theoretic Analysis of Unsupervised Domain Adaptation (ICLR '23)

- ▶ Novel upper bounds for generalization error of UDA.
- ▶ Simple regularization technique for improving generalization of UDA

- $\blacktriangleright\,$ Source data $Z=(X,Y)\sim \mu$ and target data $Z'=(X',Y')\sim \mu'$
- ► Labeled source sample: $S = \{Z_i\}_{i=1}^n \stackrel{\text{i.i.d}}{\sim} \mu^{\otimes n}$; Unlabelled target sample $S'_{X'} = \{X'_j\}_{j=1}^m \stackrel{\text{i.i.d}}{\sim} P^{\otimes m}_{X'}$
- Generalization error = testing error of target domain training error of source domain:

$$\operatorname{Err} = \mathbb{E}_{W,S,S'_{X'}} \left[R_{\mu'}(W) - R_S(W) \right]$$

Assume $\ell(f_w(X'), Y')$ is R-subgaussian. Then

$$|\mathrm{Err}| \le \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j}} \sqrt{2R^{2}I^{X'_{j}}(W; Z_{i})} + \sqrt{2R^{2}\mathrm{D}_{\mathrm{KL}}(\mu||\mu')}$$

Gradient Penalty as an Universal Regularizer

Consider SGLD. At each time step t,

▶ labelled source mini-batch: Z_{B_t} ; unlabelled target mini-batch: X'_{B_t}

• gradient:
$$G_t = g(W_{t-1}, Z_{B_t}, X'_{B_t})$$

• updating rule: $W_t = W_{t-1} - \eta_t G_t + N_t$ where $N_t \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$.

Theorem 6

Under the assumption of Theorem 5. Let the total iteration number be T, then

$$|\operatorname{Err}| \leq \sqrt{\frac{R^2}{n} \sum_{t=1}^{T} \frac{\eta_t^2}{\sigma_t^2} \mathbb{E}_{S'_{X'}, W_{t-1}, S} \left[\left| \left| G_t - \mathbb{E}_{Z_{B_t}} \left[G_t \right] \right| \right|^2 \right] + \sqrt{2R^2 \mathcal{D}_{\mathrm{KL}}(\mu || \mu')}.$$

restrict the gradient norm \implies reduce |Err|.

RotatedMNIST is built based on the MNIST dataset and consists of six domains, which are rotated MNIST images with rotation angle 0° , 15° , 30° , 45° , 60° and 75° .

	Rotated MNIST (0° as source domain)							
Method	15°	30°	45°	60°	75°	Ave		
ERM	$97.5 {\pm} 0.2$	$84.1 {\pm} 0.8$	$53.9 {\pm} 0.7$	$34.2 {\pm} 0.4$	$22.3 {\pm} 0.5$	58.4		
DANN	$97.3 {\pm} 0.4$	90.6 ± 1.1	$68.7 {\pm} 4.2$	$30.8 {\pm} 0.6$	$19.0 {\pm} 0.6$	61.3		
MMD	$97.5 {\pm} 0.1$	$95.3 {\pm} 0.4$	$73.6 {\pm} 2.1$	44.2 ± 1.8	32.1 ± 2.1	68.6		
CORAL	$97.1 {\pm} 0.3$	$82.3 {\pm} 0.3$	$56.0 {\pm} 2.4$	$30.8 {\pm} 0.2$	27.1 ± 1.7	58.7		
WD	$96.7 {\pm} 0.3$	93.1 ± 1.2	64.1 ± 3.3	41.4 ± 7.6	$27.6 {\pm} 2.0$	64.6		
KL	$97.8{\pm}0.1$	$97.1{\pm}0.2$	$93.4{\pm}0.8$	75.5 ± 2.4	$68.1{\pm}1.8$	86.4		
ERM-GP	$97.5 {\pm} 0.1$	$86.2 {\pm} 0.5$	$62.0 {\pm} 1.9$	$34.8 {\pm} 2.1$	26.1 ± 1.2	61.2		
KL-GP	$98.2{\pm}0.2$	$96.9{\pm}0.1$	$95.0{\pm}0.6$	$88.0{\pm}8.1$	$78.1{\pm}2.5$	91.2		

RotatedMNIST.

10 III awa

24

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. In *International Conference on Learning Representations*, 2017.

- Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mutual information. In *Conference on Learning Theory*. PMLR, 2020.
- Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, and Aram Galstyan. Information-theoretic generalization bounds for black-box learning algorithms. In Advances in Neural Information Processing Systems, 2021.
- Fredrik Hellström and Giuseppe Durisi. A new family of generalization bounds using samplewise evaluated CMI. In *Advances in Neural Information Processing* Systems, 2022.

Thank You!

