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▶ Generalization error/gap = testing error - training error
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▶ Generalization measures (e.g., VC-dim and Rademacher complexity) in
classical statistical learning theory cannot explain the success of modern deep
neural networks [Zhang et al., 2017].
# of parameters > # of training data & can even perfectly fit random labels
=⇒ high capacity
=⇒ still perform well on unseen data

▶ Algorithm & Distribution-dependent =⇒ non-vacuous generalization bound
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Main Contributions 7

▶ New Conditional Mutual Information (CMI) bounds which are either
theoretically or empirically tighter than previous CMI bounds for the
same supersample setting.



Supersample Setting 8

▶ Let Z̃ drawn i.i.d. from µ

▶ Let U = (U1, U2, . . . , Un)
T ∼ Unif({0, 1}n).

▶ Learning algorithm A : Zn → W
▶ Err ≜ EW,S

[
EZ∼µ[ℓ(w,Z)]− 1

n

∑n
i=1 ℓ(w,Zi)

]

Lemma 1 (Steinke and Zakynthinou [2020])

Assume the loss is bounded between [0, 1], we have

|Err| ≤
√

2I(W ;U |Z̃)
n .
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CMI, f -CMI and e-CMI 9

▶ F+
i := fW (X̃+

i ), F−
i := fW (X̃−

i ),
Fi := (F+

i , F−
i )

⇒ f-CMI Bound:

|Err| ≤ 1
n

n∑
i=1

√
I(Fi;Ui|Z̃) [Harutyunyan

et al., 2021]

▶ L+
i := ℓ(W, Z̃+

i ), L−
i := ℓ(W, Z̃−

i ),
Li := (L+

i , L
−
i )

⇒ e-CMI Bound:

|Err| ≤ 1
n

n∑
i=1

√
I(Li;Ui|Z̃) [Hellström and

Durisi, 2022]

▶ This paper: ∆Li := L−
i − L+

i

⇒ ld-CMI: I(∆Li;Ui|Z̃)



Generalization Bounds via Loss Difference 10

Theorem 1

Assume the loss is bounded between [0, 1], we have

|Err| ≤ 1

n

n∑
i=1

E
Z̃

√
2IZ̃(∆Li;Ui) ≤

1

n

n∑
i=1

√
2I(∆Li;Ui|Z̃), (1)

|Err| ≤ 1

n

n∑
i=1

√
2I(∆Li;Ui). (2)

Estimating I(W ;Ui|Z̃i) vs I(∆Li;Ui):

▶ W is a high-dimensional R.V.

▶ ∆Li is an one-dimensional R.V. =⇒ Easy-to-Compute!
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Fast-Rate MI Bound 11

Theorem 2

Let ℓ(·, ·) ∈ [0, 1]. There exist C1, C2 > 0 such that

Lµ ≤(1 + C1)Ln +

n∑
i=1

I(L+
i ;Ui)

C2n
, (3)

Lµ ≤Ln +

n∑
i=1

4I(L+
i ;Ui)

n
+ 4

√√√√ n∑
i=1

LnI(L
+
i ;Ui)

n
. (4)

If Ln → 0, then (3)(4) vanish with a faster rate.
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Sharpness Based MI Bound 12

Theorem 3

For any λ ∈ (0, 1), the “λ-sharpness” at position i of the training set is defined as

Fi(λ) ≜ EW,Zi

[
ℓ(W,Zi)− (1 + λ)EW |Zi

ℓ(W,Zi)
]2
.

Let F (λ) = 1
n

∑n
i=1 Fi(λ). Assume ℓ(·, ·) ∈ {0, 1}, λ ∈ (0, 1). Then, there exist

C1, C2 > 0 such that

Err ≤C1F (λ) +

n∑
i=1

I(L+
i ;Ui)

C2n
. (5)

▶ Ln = 0 → F (λ) = 0, but Ln = 0 ↚ F (λ) = 0;

▶ For any fixed C1 and C2, Eq. (5) is tighter than Eq. (3).
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(a) CNN on MNIST
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(b) ResNet on CIFAR10
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On the Generalization of Models Trained with SGD:
Information-Theoretic Bounds and Implications

(ICLR’22)
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▶ New information-theoretic upper bounds for the generalization error of
machine learning models trained with SGD

▶ New and simple regularization scheme



Main Result 16

Theorem 4

The generalization error of SGD is upper bounded by

Err ≤ O

 3

√√√√ T∑
t=1

E [Vt(Wt−1)]E [Tr (HWT
(Z))]

n

 (6)

▶ Gradient Dispersion: Vt(w) ≜ ES

[
||g(w,Bt)− EW,Z [∇wℓ(W,Z)]||22

]



Implication: Gaussian Model Perturbation (GMP) 17

▶ We hope the empirical risk surface at w∗ is flat, or insensitive to a small
perturbation of w∗.

min
w

Ls(w) + ρE∆∼N (0,σ2Id) [Ls(w +∆)− Ls(w)],

where ρ is a hyper-parameter.

▶ Replacing the expectation above with its stochastic approximation using k
realizations of ∆ gives rise to the following optimization problem.

min
w

1

b

∑
z∈B

(
(1− ρ)ℓ(w, z) + ρ

1

k

k∑
i=1

(ℓ(w + δi, z))

)
.



Implication: GMP on VGG16 18

Method SVHN CIFAR-10 CIFAR-100

ERM 96.86±0.060 93.68±0.193 72.16±0.297
Dropout 97.04±0.049 93.78±0.147 72.28±0.337
L. S. 96.93±0.070 93.71±0.158 72.51±0.179
Flooding 96.85±0.085 93.74±0.145 72.07±0.271
MixUp 96.91±0.057 94.52±0.112 73.19±0.254
Adv. Tr. 97.06±0.091 93.51±0.130 70.88±0.145
AMP1 97.27±0.015 94.35±0.147 74.40±0.168
GMP3 97.18±0.057 94.33±0.094 74.45±0.256
GMP10 97.09±0.068 94.45±0.158 75.09±0.285

Top-1 classification accuracy acc.(%) of VGG16. We run experiments 10 times and report
the mean and the standard deviation of the testing accuracy.

1minw Ls(w) + ρmaxδ Ls(w + δ)− Ls(w)



Information-Theoretic Analysis of Unsupervised
Domain Adaptation (ICLR’23)



Main Contributions 20

▶ Novel upper bounds for generalization error of UDA.

▶ Simple regularization technique for improving generalization of UDA



Additional Notations 21

▶ Source data Z = (X,Y ) ∼ µ and target data Z ′ = (X ′, Y ′) ∼ µ′

▶ Labeled source sample: S = {Zi}ni=1
i.i.d∼ µ⊗n; Unlabelled target sample

S′
X′ = {X ′

j}mj=1
i.i.d∼ P⊗m

X′

▶ Generalization error = testing error of target domain - training error of
source domain:

Err = EW,S,S′
X′

[
Rµ′(W )−RS(W )

]



MI Bound for EP 22

Theorem 5

Assume ℓ(fw(X
′), Y ′) is R-subgaussian. Then

|Err| ≤ 1

nm

m∑
j=1

n∑
i=1

EX′
j

√
2R2IX

′
j (W ;Zi) +

√
2R2DKL(µ||µ′).



Gradient Penalty as an Universal Regularizer 23

Consider SGLD. At each time step t,

▶ labelled source mini-batch: ZBt ; unlabelled target mini-batch: X ′
Bt

▶ gradient: Gt = g(Wt−1, ZBt , X
′
Bt
)

▶ updating rule: Wt = Wt−1 − ηtGt +Nt where Nt ∼ N (0, σ2Id).

Theorem 6

Under the assumption of Theorem 5. Let the total iteration number be T , then

|Err| ≤

√√√√R2

n

T∑
t=1

η2t
σ2
t

ES′
X′ ,Wt−1,S

[∣∣∣∣∣∣Gt − EZBt
[Gt]

∣∣∣∣∣∣2]+√2R2DKL(µ||µ′).

restrict the gradient norm =⇒ reduce |Err|.



Experimental Results: RotatedMNIST 24

RotatedMNIST is built based on the MNIST dataset and consists of six domains,
which are rotated MNIST images with rotation angle 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦.

RotatedMNIST.

RotatedMNIST (0◦ as source domain)

Method 15◦ 30◦ 45◦ 60◦ 75◦ Ave

ERM 97.5±0.2 84.1±0.8 53.9±0.7 34.2±0.4 22.3±0.5 58.4
DANN 97.3±0.4 90.6±1.1 68.7±4.2 30.8±0.6 19.0±0.6 61.3
MMD 97.5±0.1 95.3±0.4 73.6±2.1 44.2±1.8 32.1±2.1 68.6

CORAL 97.1±0.3 82.3±0.3 56.0±2.4 30.8±0.2 27.1±1.7 58.7
WD 96.7±0.3 93.1±1.2 64.1±3.3 41.4±7.6 27.6±2.0 64.6
KL 97.8±0.1 97.1±0.2 93.4±0.8 75.5±2.4 68.1±1.8 86.4

ERM-GP 97.5±0.1 86.2±0.5 62.0±1.9 34.8±2.1 26.1±1.2 61.2
KL-GP 98.2±0.2 96.9±0.1 95.0±0.6 88.0±8.1 78.1±2.5 91.2
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