On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications

Ziqiao Wang¹

Yongyi Mao¹

¹University of Ottawa

December 3, 2021

Generalization measures (e.g., VC-dim and Rademacher complexity) in classical statistical learning theory cannot explain the success of modern deep neural networks.

Generalization measures (e.g., VC-dim and Rademacher complexity) in classical statistical learning theory cannot explain the success of modern deep neural networks.

of parameters > # of training data & can even perfectly fit random labels \implies high capacity

 \Rightarrow still perform well on unseen data

(日)

Generalization measures (e.g., VC-dim and Rademacher complexity) in classical statistical learning theory cannot explain the success of modern deep neural networks.

of parameters > # of training data & can even perfectly fit random labels \implies high capacity

- \implies still perform well on unseen data
- ▷ Algorithm & Distribution-dependent ⇒ non-vacuous generalization bound

Generalization measures (e.g., VC-dim and Rademacher complexity) in classical statistical learning theory cannot explain the success of modern deep neural networks.

of parameters > # of training data & can even perfectly fit random labels \implies high capacity

- \implies still perform well on unseen data
- ▷ Algorithm & Distribution-dependent ⇒ non-vacuous generalization bound
- Does the flatness have impact on the generalization?

Our work follows up on a recent work of

Gergely Neu, Gintare Karolina Dziugaite, Mahdi Haghifam, and Daniel M Roy. Information theoretic generalization bounds for stochastic gradient descent. In COLT, 2021

Problem Setup

- ▷ Training dataset: $S = \{Z_i\}_{i=1}^n \in \mathcal{Z}$, drawn i.i.d. from μ
- \triangleright Hypothesis space: $\mathcal{W} \subseteq \mathbb{R}^d$
- ▷ Learning algorithm: $A : Z^n \to W$ by $P_{W|S}$
- $\triangleright \text{ Loss: } \ell : \mathcal{W} \times \mathcal{Z} \to \mathbb{R}^+$
- We're interested in
 - ▷ Population risk: $L_{\mu}(w) \triangleq \mathbb{E}_{Z \sim \mu}[\ell(w, Z)]$
 - ▷ Empirical risk: $L_S(w) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$
 - ▷ Expected generalization error: $gen(\mu, P_{W|S}) \triangleq \mathbb{E}_{W,S}[L_{\mu}(W) L_{S}(W)]$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Lemma 1 (Thm 1., Xu&Raginsky'2017)

Assume the loss $\ell(w, Z)$ is *R*-subgaussian^a for any $w \in W$. The generalization error of A is bounded by

$$\operatorname{gen}(\mu, P_{W|S})| \leq \sqrt{\frac{2R^2}{n}}I(W; S),$$

^{*a*}A random variable *X* is *R*-subgaussian if for any ρ , $\log \mathbb{E} \exp (\rho (X - \mathbb{E}X)) \le \rho^2 R^2/2$.

Mutual information $I(W; S) \triangleq D_{KL}(P_{W,S} || P_W \otimes P_S)$.

⇒ Distribution-dependent and Algorithm-dependent

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Stochastic Gradient Descent (SGD)

SGD updates:

$$W_t \triangleq W_{t-1} - \lambda_t g(W_{t-1}, B_t),$$

where

$$g(w, B_t) \triangleq \frac{1}{b} \sum_{z \in B_t} \nabla_w \ell(w, z),$$

 \triangleright λ_t : learning rate

b: batch size

 \triangleright *B_t* denotes the batch used for the *t*th update.

Assume SGD outputs W_T as the learned model parameter.

Stochastic Gradient Descent (SGD)

SGD updates:

$$W_t \triangleq W_{t-1} - \lambda_t g(W_{t-1}, B_t),$$

where

$$g(w, B_t) \triangleq \frac{1}{b} \sum_{z \in B_t} \nabla_w \ell(w, z),$$

 \triangleright λ_t : learning rate

b: batch size

 \triangleright *B_t* denotes the batch used for the *t*th update.

Assume SGD outputs W_T as the learned model parameter.

Difficulty of using Xu's bound: $I(W_T; S) \rightarrow \infty$ in some cases

Auxiliary Weight Process (only exists in the analysis)

Let $\sigma_1, \sigma_2, \ldots, \sigma_T$ be a sequence of positive real numbers.

Define

$$\widetilde{W}_0 \triangleq W_0$$
, and $\widetilde{W}_t \triangleq \widetilde{W}_{t-1} - \lambda_t g(W_{t-1}, B_t) + N_t$, for $t > 0$,

where $N_t \sim \mathcal{N}(0, \sigma_t^2 \mathbf{I}_d)$ is a Gaussian noise.

Let
$$\Delta_t = \sum_{\tau=1}^t N_{\tau}$$
. Notice that $\widetilde{W}_t = W_t + \Delta_t$.

(I) < ((i) <

Xu's bound (Lemma 1) for noisy, iterative algorithm

- ▷ Learning algorithm \widetilde{A} takes *S* as input and outputs \widetilde{W}
- Decomposition of the expected generalization gap:

$$\begin{aligned} &|\operatorname{gen}(\mu, P_{W_T|S})| \\ &= |\mathbb{E}_{W,S}[L_{\mu}(W_T) - L_S(W_T)]| \\ &= \left| \mathbb{E}_{W,S,\Delta}[L_{\mu}(W_T) - L_S(W_T) + L_{\mu}(\widetilde{W}_T) - L_S(\widetilde{W}_T) - L_{\mu}(\widetilde{W}_T) + L_S(\widetilde{W}_T)] \right| \\ &= \left| \operatorname{gen}(\mu, P_{\widetilde{W}_T|S}) + \mathop{\mathbb{E}}_{W_T,\Delta_T} \left[L_{\mu}(W_T) - L_{\mu}(\widetilde{W}_T) \right] + \mathop{\mathbb{E}}_{W_T,\Delta_T,S} \left[L_S(\widetilde{W}_T) - L_S(W_T) \right] \right|. \end{aligned}$$

Xu's bound (Lemma 1) for noisy, iterative algorithm

- ▷ Learning algorithm \widetilde{A} takes *S* as input and outputs \widetilde{W}
- Decomposition of the expected generalization gap:

$$\begin{aligned} &|\operatorname{gen}(\mu, P_{W_T|S})| \\ &= |\mathbb{E}_{W,S}[L_{\mu}(W_T) - L_S(W_T)]| \\ &= \left| \mathbb{E}_{W,S,\Delta}[L_{\mu}(W_T) - L_S(W_T) + L_{\mu}(\widetilde{W}_T) - L_S(\widetilde{W}_T) - L_{\mu}(\widetilde{W}_T) + L_S(\widetilde{W}_T)] \right| \\ &= \left| \operatorname{gen}(\mu, P_{\widetilde{W}_T|S}) + \mathop{\mathbb{E}}_{W_T,\Delta_T} \left[L_{\mu}(W_T) - L_{\mu}(\widetilde{W}_T) \right] + \mathop{\mathbb{E}}_{W_T,\Delta_T,S} \left[L_S(\widetilde{W}_T) - L_S(W_T) \right] \right|. \end{aligned}$$

$$\implies |\text{gen}(\mu, P_{\widetilde{W}_T|S})| \le \sqrt{\frac{2R^2}{n}}I(\widetilde{W}_T; S) < \infty$$

Information-theoretic bound for SGD

Lemma 2 (Thm.1, Neu et al'2021)

The generalization error of SGD is upper bounded by

$$|\operatorname{gen}(\mu, P_{W_T|S})| \leq \sqrt{\frac{4R^2}{n} \sum_{t=1}^T \frac{\lambda_t^2}{\sigma_t^2} \mathbb{E}\left[\Psi(W_{t-1}) + \widetilde{\mathbb{V}}_t(W_{t-1})\right]} + |\mathbb{E}\left[\gamma(W_T, S) - \gamma(W_T, S')\right]$$

where

- $\mathbb{E} \text{ Local gradient sensitivity:} \\ \Psi(w_{t-1}) \triangleq \mathbb{E} \left[||\nabla_w \ell(w_{t-1}, Z) \nabla_w \ell(w_{t-1} + \zeta, Z)||_2^2 \right], \zeta \sim \mathcal{N}(0, 2\sum_{i=1}^{t-1} \sigma_i^2 \mathbf{I}_d)$
- ▷ Gradient Dispersion/Variance: $\widetilde{\mathbb{V}}_t(w) \triangleq \mathbb{E}\left[||g(w, B_t) \mathbb{E}\left[\nabla_w \ell(w, Z)\right]||_2^2\right]$
- ▷ Local value sensitivity: $\gamma(w, s) \triangleq \mathbb{E} [L_s(w + \Delta_T) L_s(w)]$

Our main result

Let
$$\mathbb{V}_t(w) \triangleq \mathbb{E}\left[||g(w, B_t) - \mathbb{E}\left[\nabla_w \ell(W, Z)\right]||_2^2\right].$$

Theorem 1

The generalization error of SGD is upper bounded by

$$|\operatorname{gen}(\mu, P_{W_T|S})| \leq \sqrt{\frac{R^2}{n} \sum_{t=1}^T \frac{\lambda_t^2}{\sigma_t^2} \mathbb{E}\left[\mathbb{V}_t(W_{t-1})\right] + \left|\mathbb{E}\left[\gamma(W_T, S) - \gamma(W_T, S')\right]\right|.}$$
(1)

Assume $L_{\mu}(w_T) \leq \mathbb{E}_{\Delta} [L_{\mu}(w_T + \Delta_T)]$ and σ_t^2 is independent of *t*. Denote by H_{W_T} the Hessian of the loss with respect to W_T and let $Tr(\cdot)$ denote trace. Then

$$\operatorname{gen}(\mu, P_{W_T|S}) \leq \frac{3}{2} \left(\sum_{t=1}^{T} \frac{R^2 \lambda_t^2 T}{n} \mathbb{E}\left[\mathbb{V}_t(W_{t-1}) \right] \mathbb{E}\left[\operatorname{Tr}\left(\mathbf{H}_{W_T}(Z) \right) \right] \right)^{\frac{1}{3}}$$
(2)

$$|\operatorname{gen}(\mu, P_{W_T|S})| \leq \sqrt{\frac{R^2}{n} \sum_{t=1}^T \frac{\lambda_t^2}{\sigma_t^2} \mathbb{E}\left[\mathbb{V}_t(W_{t-1})\right] + \left|\mathbb{E}\left[\gamma(W_T, S) - \gamma(W_T, S')\right]\right|}.$$

▷ The first term: "trajectory term"; The second term: "flatness term"

・ロト ・回 ト ・ ヨト ・ ヨ

$$|\operatorname{gen}(\mu, P_{W_T|S})| \leq \sqrt{\frac{R^2}{n} \sum_{t=1}^T \frac{\lambda_t^2}{\sigma_t^2} \mathbb{E}\left[\mathbb{V}_t(W_{t-1})\right] + \left|\mathbb{E}\left[\gamma(W_T, S) - \gamma(W_T, S')\right]\right|}.$$

- ▷ The first term: "trajectory term"; The second term: "flatness term"
- Our bound improves the bound in Lemma 2:

This improvement should come at no surprise, since $\Psi(W_{t-1})$ has the cumulative variance $2\sum_{i=1}^{t-1} \sigma_i^2 \mathbf{I}_d$

$$\operatorname{gen}(\mu, P_{W_T|S}) \leq \frac{3}{2} \left(\sum_{t=1}^T \frac{R^2 \lambda_t^2 T}{n} \mathbb{E}\left[\mathbb{V}_t(W_{t-1}) \right] \mathbb{E}\left[\operatorname{Tr}\left(\mathbf{H}_{W_T}(Z) \right) \right] \right)^{\frac{1}{3}}$$

▷ Condition L_µ(w_T) ≤ E_{ΔT} [L_µ(w_T + Δ_T)] ⇒ the perturbation does not decrease the population risk.
 Also assumed in [Foret, et al.'2021] in the derivation of a PAC-Bayesian bound.

$$\operatorname{gen}(\mu, P_{W_T|S}) \leq \frac{3}{2} \left(\sum_{t=1}^T \frac{R^2 \lambda_t^2 T}{n} \mathbb{E}\left[\mathbb{V}_t(W_{t-1}) \right] \mathbb{E}\left[\operatorname{Tr}\left(\mathbf{H}_{W_T}(Z) \right) \right] \right)^{\frac{1}{2}}$$

- ▷ Condition L_µ(w_T) ≤ E_{ΔT} [L_µ(w_T + Δ_T)] ⇒ the perturbation does not decrease the population risk.
 Also assumed in [Foret, et al.'2021] in the derivation of a PAC-Bayesian bound.
- \triangleright Eq.2 follows from Eq.1 by minimizing the bound over σ . Eq.2 can be computed easily and efficiently.

Application: Linear Networks

Regression setting:

- $\triangleright Z = (X, Y)$
- $\triangleright \ X \in \mathbb{R}^{d_0}$; Assume ||X|| = 1
- $\triangleright \operatorname{\mathsf{Model}} f(W, \cdot) : \mathbb{R}^{d_0} \to \mathbb{R}$
- $\triangleright \ \ell(W,Z) = 1/2(Y-f(W,X))^2$

Theorem 2 (Linear Networks)

Let $f(W, X) = W^T X$. Then,

$$\operatorname{gen}(\mu, P_{W_T|S}) \leq 3\left(\sum_{t=1}^T \frac{R^2 \lambda_t^2 T}{4n} \mathbb{E}\left[\ell(W_{t-1}, Z)\right]\right)^{\frac{1}{3}}$$

(ロ) (部) (E) (E) (E)

Application: Two-Layer ReLU Networks

Theorem 3 (Two-Layer ReLU Networks)

Following [Arora et al'2019], consider $f(W, X) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} A_r \text{ReLU}(W_r^T X)$ where $A_r \sim \text{unif}(\{+1, -1\})$. We fix the second layer parameters during training. Then,

$$\operatorname{gen}(\mu, P_{W_T|S}) \leq 3\left(\sum_{r=1}^m \mathbb{E}\left[\frac{\mathbb{I}_{r,i,T}}{m}\right] \sum_{t=1}^T \frac{R^2 \lambda_t^2 T}{4n} \mathbb{E}\left[\sum_{r=1}^m \frac{\mathbb{I}_{r,i,t}}{m} \ell(W_{t-1}, Z)\right]\right)^{\frac{1}{3}},$$

where $\mathbb{I}_{r,i,t} = \mathbb{I}\{W_{t-1,r}^T X_i \ge 0\}$ and \mathbb{I} is the indicator function.

 \implies Sparsely activated ReLU networks are expected to generalize better.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Experiment: Bound Verification of Thm 1

Figure 1: Estimated bound and empirical generalization gap ("gap") as functions of network width ((a) and (b)) and label noise level ((c) and (d)). Y-axis is in log scale.

Experiment: Epoch-wise Double Descent of Gradient Dispersion

Figure 2: Dynamics of gradient dispersion, in relation to training/testing accuracy.

Three Learning Phases

- $\triangleright \ \mathbb{V}$ rapidly descends; Both training acc. and test acc. increase; \Longrightarrow "Generalization"
- ▷ V starts increasing until it reaches a peak value; Training acc. and testing acc. gradually diverge; → "Memorization"
- ▷ V descends again; Training and testing curves reach their respective maximum and minimum.

Ziqiao Wang (University of Ottawa)

Implication: Dynamic Gradient Clipping

Algorithm 1 Dynamic Gradient Clipping

- **Require:** Training set S, Batch size b, Loss function ℓ , Initial model parameter w_0 , Learning rate λ , Initial minimum gradient norm \mathcal{G} , Number of iterations T, Clipping parameter α , Clipping step T_c
- 1: for $t \leftarrow 1$ to T do
- Sample $\mathcal{B} = \{z_i\}_{i=1}^b$ from training set S 2:
- 3. Compute gradient: $g_{\mathcal{B}} \leftarrow \sum_{i=1}^{b} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_{t-1}, \boldsymbol{z}_i)/b$
- if $t > T_c$ then 4:
- if $||q_{\mathcal{B}}||_2 > \mathcal{G}$ then 5: 6:
- $g_{\mathcal{B}} \leftarrow \alpha \cdot \mathcal{G} \cdot g_{\mathcal{B}} / ||g_{\mathcal{B}}||_2$
- 7: else
- 8: $\mathcal{G} \leftarrow ||g_{\mathcal{B}}||_2$
- 9: end if
- end if 10:
- 11: Update parameter: $w_t \leftarrow w_{t-1} - \lambda \cdot g_{\mathcal{B}}$
- 12: end for

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Implication: Dynamic Gradient Clipping

Algorithm 1 Dynamic Gradient Clipping 100 **Require:** Training set S, Batch size b, Loss function ℓ , Initial λ , Initial minimum gradient norm \mathcal{G} , Number of iterations step T_c Frain Acc. w/o clipping Test Acc. w/o clipping 1: for $t \leftarrow 1$ to T do Train Acc. w/ clipping Test Acc. w/ clipping Sample $\mathcal{B} = \{z_i\}_{i=1}^b$ from training set S 2: Compute gradient: 3. (a) noise=0.2 (MNIST) (b) noise=0.4 (MNIST) $g_{\mathcal{B}} \leftarrow \sum_{i=1}^{b} \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_{t-1}, \boldsymbol{z}_i)/b$ if $t > T_c$ then 4: 5: if $||g_{\mathcal{B}}||_2 > \mathcal{G}$ then 6: $q_{\mathcal{B}} \leftarrow \alpha \cdot \mathcal{G} \cdot q_{\mathcal{B}} / ||q_{\mathcal{B}}||_2$ 7: else $\mathcal{G} \leftarrow ||g_{\mathcal{B}}||_2$ 8: 9: end if 10: end if 11: Update parameter: $w_t \leftarrow w_{t-1} - \lambda \cdot g_{\mathcal{B}}$ (c) noise=0.2 (CIFAR10) (d) noise=0.4 (CIFAR10) 12: end for

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Implication: Gaussian Model Perturbation (GMP)

▷ We hope the empirical risk surface at w^* is flat, or insensitive to a small perturbation of w^* .

$$\min_{w} L_{s}(w) + \rho \mathop{\mathbb{E}}_{\Delta \sim \mathcal{N}(0,\sigma^{2}\mathbf{I}_{d})} [L_{s}(w + \Delta) - L_{s}(w)],$$

where ρ is a hyper-parameter.

(D) (A) (A) (A)

Implication: Gaussian Model Perturbation (GMP)

▷ We hope the empirical risk surface at w* is flat, or insensitive to a small perturbation of w*.

$$\min_{w} L_{s}(w) + \rho \mathop{\mathbb{E}}_{\Delta \sim \mathcal{N}(0,\sigma^{2}\mathbf{I}_{d})} [L_{s}(w + \Delta) - L_{s}(w)],$$

where ρ is a hyper-parameter.

▷ Replacing the expectation above with its stochastic approximation using k realizations of Δ gives rise to the following optimization problem.

$$\min_{w} \frac{1}{b} \sum_{z \in B} \left((1-\rho)\ell(w,z) + \rho \frac{1}{k} \sum_{i=1}^{k} \left(\ell(w+\delta_i,z) \right) \right).$$

Algorithm 2 Gaussian Model Perturbation Training

- **Require:** Training set S, Batch size b, Loss function ℓ , Initial model parameter w_0 , Learning rate λ , Number of noise k, Standard deviation of Gaussian distribution σ , Lagrange multiplier ρ while w_t not converged **do**
- 2: Update iteration: $t \leftarrow t + 1$ Sample $\mathcal{B} = \{z_i\}_{i=1}^{b}$ from training set S4: Sample $\Delta_j \sim \mathcal{N}(0, \sigma^2)$ for $j \in [k]$
- 4: Sample $\Delta_j \sim \mathcal{N}(0, \sigma^2)$ for $j \in [k]$ Compute gradient: $g_{\mathcal{B}} \leftarrow \sum_{i=1}^b \left(\nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_t, z_i) + \rho \sum_{j=1}^k \left(\nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_t + \Delta_j, z_i) - \nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}_t, z_i) \right) / k \right) / b$
- 6: Update parameter: $w_{t+1} \leftarrow w_t \lambda \cdot g_B$ end while
- Empirical evidence shows that a small k (e.g., k = 3) already gives competitive performance.
- ▷ Implementing the k + 1 forward passes on parallel processors further reduces the computation load.

<ロ> <同> <同> < 同> < 同> < 三> < 三> < 三>

Implication: GMP on VGG16

Method	SVHN	CIFAR-10	CIFAR-100
ERM	96.86±0.060	93.68±0.193	72.16±0.297
Dropout	97.04±0.049	93.78±0.147	72.28±0.337
L. S.	96.93±0.070	93.71±0.158	72.51±0.179
Flooding	$96.85 {\pm} 0.085$	93.74±0.145	72.07±0.271
MixUp	96.91±0.057	94.52±0.112	73.19±0.254
Adv. Tr.	97.06±0.091	93.51±0.130	70.88±0.145
AMP ¹	97.27±0.015	94.35±0.147	74.40±0.168
GMP ³	<u>97.18±0.057</u>	94.33±0.094	74.45±0.256
GMP ¹⁰	97.09±0.068	<u>94.45±0.158</u>	75.09±0.285

Table 1: Top-1 classification accuracy acc.(%) of VGG16. We run experiments 10 times and report the mean and the standard deviation of the testing accuracy. Superscript denotes the number of sampled Gaussian noises during training.

¹min_w
$$L_s(w) + \rho \max_{\delta} L_s(w + \delta) - L_s(w)$$

Implication: GMP on PreActResNet18

Method	SVHN	CIFAR-10	CIFAR-100
ERM	97.05±0.063	94.98±0.212	75.69±0.303
Dropout	97.20±0.065	95.14±0.148	75.52±0.351
L.S.	97.22±0.087	95.15±0.115	77.93±0.256
Flooding	97.16±0.047	95.03±0.082	75.50±0.234
MixUp	97.26±0.044	95.91±0.117	78.22±0.210
Adv. Tr.	97.23±0.080	95.01±0.085	74.77±0.229
AMP	97.70±0.025	96.03±0.091	78.49±0.308
GMP ³	97.43±0.037	95.64±0.053	78.05±0.208
GMP ¹⁰	97.34±0.058	95.71±0.073	78.07±0.170

Table 2: Top-1 classification accuracy acc.(%) of PreActResNet18.

イロト イヨト イヨト イヨト

Proof Sketch of Theorem 1 I

÷

Recall that

$$|\operatorname{gen}(\mu, P_{W_T|S})| \leq \sqrt{\frac{2R^2}{n}I(\widetilde{W}_T; S)} + \left| \underset{W_T, S, S'}{\mathbb{E}} \left[\gamma(W_T, S) - \gamma(W_T, S') \right] \right|.$$

Notice that

$$I(\widetilde{W}_{T}; S) = I\left(\widetilde{W}_{T-1} - \lambda_{T}g(W_{T-1}, B_{T}) + N_{T}; S\right)$$

$$\leq I\left(\widetilde{W}_{T-1}, -\lambda_{T}g(W_{T-1}, B_{T}) + N_{T}; S\right)$$
(3)

$$=I(\widetilde{W}_{T-1};S)+I\left(-\lambda_T g(W_{T-1},B_T)+N_T;S|\widetilde{W}_{T-1}\right)$$
(4)

$$\leq \sum_{t=1}^{T} I\left(-\lambda_t g(W_{t-1}, B_t) + N_t; S|\widetilde{W}_{t-1}\right),\tag{5}$$

(日) (日) (日) (日) (日)

Proof Sketch of Theorem 1 II

Lemma 3

Let *X*, *Y* and Δ be random variables which are all independent of $N \sim \mathcal{N}(0, I)$. Let $Z = Y + \Delta$, then for any σ and any function *f*, we have

$$I(f(Z,X) + \sigma N;X|Y) \leq rac{1}{2\sigma^2} \mathbb{E}\left[||f(Z,X) - \mathbb{E}\left[f(Z,X)\right]||^2
ight]$$

Thus,

$$I(-\lambda_t g(W_{t-1}, B_t) + \sigma_t N; S | \widetilde{W}_{t-1}) \leq \frac{\lambda_t^2}{2\sigma_t^2} \mathbb{E} \left[||g(W_{t-1}, B_t) - \mathbb{E} \left[\nabla_w \ell(W_{t-1}, Z) \right] ||^2 \right] \\ = \frac{\lambda_t^2}{2\sigma_t^2} \mathbb{E} \left[\mathbb{V}_t(W_{t-1}) \right]$$

Putting everything together we have the bound in Theorem 1.

Ziqiao Wang	(University	of Ottawa)
-------------	--------------	------------

- We derive tighter information-theoretic bounds for SGD
- Apply the bound to linear networks and two-layer ReLU networks
- ▷ Epoch-wise double descent of gradient dispersion is observed
- Design new regularization schemes, e.g., dynamic gradient clipping and GMP.

Thanks for listening!

・ロト ・回ト ・ヨト ・ヨト