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Motivation

. Generalization measures (e.g., VC-dim and Rademacher complexity) in
classical statistical learning theory cannot explain the success of modern
deep neural networks.

# of parameters > # of training data & can even perfectly fit random labels
=⇒ high capacity
=⇒ still perform well on unseen data

. Algorithm & Distribution-dependent =⇒ non-vacuous generalization bound

. Does the flatness have impact on the generalization?
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Our work follows up on a recent work of

Gergely Neu, Gintare Karolina Dziugaite, Mahdi Haghifam, and
Daniel M Roy. Information theoretic generalization bounds for
stochastic gradient descent. In COLT, 2021
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Problem Setup

. Training dataset: S = {Zi}n
i=1 ∈ Z, drawn i.i.d. from µ

. Hypothesis space: W ⊆ Rd

. Learning algorithm: A : Zn →W by PW|S

. Loss: ` :W ×Z → R+

. We’re interested in
. Population risk: Lµ(w) , EZ∼µ[`(w,Z)]

. Empirical risk: LS(w) , 1
n

∑n
i=1 `(w,Zi)

. Expected generalization error: gen(µ,PW|S) , EW,S[Lµ(W)− LS(W)]
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Lemma 1 (Thm 1., Xu&Raginsky’2017)

Assume the loss `(w,Z) is R-subgaussiana for any w ∈ W. The generalization
error of A is bounded by

|gen(µ,PW|S)| ≤
√

2R2

n
I(W; S),

aA random variable X is R-subgaussian if for any ρ, logE exp (ρ (X − EX)) ≤ ρ2R2/2.

Mutual information I(W; S) , DKL(PW,S||PW ⊗ PS).

=⇒ Distribution-dependent and Algorithm-dependent

Ziqiao Wang ( University of Ottawa) NRC AI4D December 3, 2021 5 / 26



Stochastic Gradient Descent (SGD)

SGD updates:
Wt , Wt−1 − λtg(Wt−1,Bt),

where
g(w,Bt) ,

1
b

∑
z∈Bt

∇w`(w, z),

. λt: learning rate

. b: batch size

. Bt denotes the batch used for the tth update.
Assume SGD outputs WT as the learned model parameter.

Difficulty of using Xu’s bound: I(WT ; S)→∞ in some cases
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Auxiliary Weight Process (only exists in the analysis)

Let σ1, σ2, . . . , σT be a sequence of positive real numbers.

Define

W̃0 , W0, and W̃t , W̃t−1 − λtg(Wt−1,Bt) + Nt, for t > 0,

where Nt ∼ N (0, σ2
t Id) is a Gaussian noise.

N1 N2 · · · NT−1 NT

↓ ↓ ↓ ↓
W̃0 → W̃1 → W̃2 → · · · → W̃T−1 → W̃T

‖ ↗ ↗ ↗ ↗
W0 → W1 → W2 → · · · → WT−1 → WT

Let ∆t =
∑t
τ=1 Nτ . Notice that W̃t = Wt + ∆t.
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Xu’s bound (Lemma 1) for noisy, iterative algorithm

. Learning algorithm Ã takes S as input and outputs W̃

. Decomposition of the expected generalization gap:

|gen(µ,PWT |S)|
= |EW,S[Lµ(WT)− LS(WT)]|

=
∣∣∣EW,S,∆[Lµ(WT)− LS(WT) + Lµ(W̃T)− LS(W̃T)− Lµ(W̃T) + LS(W̃T)]

∣∣∣
=

∣∣∣∣gen(µ,PW̃T |S) + E
WT ,∆T

[
Lµ(WT)− Lµ(W̃T)

]
+ E

WT ,∆T ,S

[
LS(W̃T)− LS(WT)

]∣∣∣∣ .

=⇒ |gen(µ,PW̃T |S)| ≤
√

2R2

n I(W̃T ; S) <∞
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Information-theoretic bound for SGD

Lemma 2 (Thm.1, Neu et al’2021)

The generalization error of SGD is upper bounded by

|gen(µ,PWT |S)| ≤

√√√√4R2

n

T∑
t=1

λ2
t

σ2
t
E
[
Ψ(Wt−1) + Ṽt(Wt−1)

]
+ |E [γ(WT , S)− γ(WT , S′)]| ,

where
. Local gradient sensitivity:

Ψ(wt−1) , E
[
||∇w`(wt−1,Z)−∇w`(wt−1 + ζ,Z)||22

]
, ζ ∼ N (0, 2

∑t−1
i=1 σ

2
i Id)

. Gradient Dispersion/Variance: Ṽt(w) , E
[
||g(w,Bt)− E [∇w`(w,Z)]||22

]
. Local value sensitivity: γ(w, s) , E [Ls(w + ∆T)− Ls(w)]
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Our main result

Let Vt(w) , E
[
||g(w,Bt)− E [∇w`(W,Z)]||22

]
.

Theorem 1
The generalization error of SGD is upper bounded by

|gen(µ,PWT |S)| ≤

√√√√R2

n

T∑
t=1

λ2
t

σ2
t
E [Vt(Wt−1)] + |E [γ(WT , S)− γ(WT , S′)]| . (1)

Assume Lµ(wT) ≤ E∆ [Lµ(wT + ∆T)] and σ2
t is independent of t. Denote by

HWT the Hessian of the loss with respect to WT and let Tr(·) denote trace. Then

gen(µ,PWT |S) ≤ 3
2

(
T∑

t=1

R2λ2
t T

n
E [Vt(Wt−1)]E [Tr (HWT (Z))]

) 1
3

(2)
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|gen(µ,PWT |S)| ≤

√√√√R2

n

T∑
t=1

λ2
t

σ2
t
E [Vt(Wt−1)] + |E [γ(WT , S)− γ(WT , S′)]| .

. The first term: “trajectory term”; The second term: “flatness term”

. Our bound improves the bound in Lemma 2:

This improvement should come at no surprise, since Ψ(Wt−1) has the cu-
mulative variance 2

∑t−1
i=1 σ

2
i Id
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gen(µ,PWT |S) ≤ 3
2

(
T∑

t=1

R2λ2
t T

n
E [Vt(Wt−1)]E [Tr (HWT (Z))]

) 1
3

. Condition Lµ(wT) ≤ E∆T [Lµ(wT + ∆T)] =⇒ the perturbation does not de-
crease the population risk.
Also assumed in [Foret, et al.’2021] in the derivation of a PAC-Bayesian
bound.

. Eq.2 follows from Eq.1 by minimizing the bound over σ.
Eq.2 can be computed easily and efficiently.
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Application: Linear Networks

Regression setting:
. Z = (X,Y)

. X ∈ Rd0 ; Assume ||X|| = 1

. Model f (W, ·) : Rd0 → R

. `(W,Z) = 1/2(Y − f (W,X))2

Theorem 2 (Linear Networks)

Let f (W,X) = WTX. Then,

gen(µ,PWT |S) ≤ 3

(
T∑

t=1

R2λ2
t T

4n
E [`(Wt−1,Z)]

) 1
3

.
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Application: Two-Layer ReLU Networks

Theorem 3 (Two-Layer ReLU Networks)

Following [Arora et al’2019], consider f (W,X) = 1√
m

∑m
r=1 ArReLU(WT

r X)

where Ar ∼ unif({+1,−1}). We fix the second layer parameters during
training. Then,

gen(µ,PWT |S) ≤ 3

(
m∑

r=1

E
[
Ir,i,T

m

] T∑
t=1

R2λ2
t T

4n
E

[
m∑

r=1

Ir,i,t

m
`(Wt−1,Z)

]) 1
3

,

where Ir,i,t = I{WT
t−1,rXi ≥ 0} and I is the indicator function.

=⇒ Sparsely activated ReLU networks are expected to generalize better.
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Experiment: Bound Verification of Thm 1

Figure 1: Estimated bound and empirical generalization gap (“gap”) as functions of net-
work width ((a) and (b)) and label noise level ((c) and (d)). Y-axis is in log scale.
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Experiment: Epoch-wise Double Descent of Gradient
Dispersion

Figure 2: Dynamics of gradient dispersion, in relation to training/testing accuracy.
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Three Learning Phases

. V rapidly descends; Both training acc. and test acc. increase; =⇒
“Generalization”

. V starts increasing until it reaches a peak value; Training acc. and testing
acc. gradually diverge; =⇒ “Memorization”

. V descends again; Training and testing curves reach their respective
maximum and minimum.
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Implication: Dynamic Gradient Clipping
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Implication: Gaussian Model Perturbation (GMP)

. We hope the empirical risk surface at w∗ is flat, or insensitive to a small
perturbation of w∗.

min
w

Ls(w) + ρ E
∆∼N (0,σ2Id)

[Ls(w + ∆)− Ls(w)],

where ρ is a hyper-parameter.

. Replacing the expectation above with its stochastic approximation using k
realizations of ∆ gives rise to the following optimization problem.

min
w

1
b

∑
z∈B

(
(1− ρ)`(w, z) + ρ

1
k

k∑
i=1

(`(w + δi, z))

)
.
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Implication: GMP

. Empirical evidence shows that a small k (e.g., k = 3) already gives com-
petitive performance.

. Implementing the k + 1 forward passes on parallel processors further re-
duces the computation load.
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Implication: GMP on VGG16

Method SVHN CIFAR-10 CIFAR-100

ERM 96.86±0.060 93.68±0.193 72.16±0.297
Dropout 97.04±0.049 93.78±0.147 72.28±0.337
L. S. 96.93±0.070 93.71±0.158 72.51±0.179
Flooding 96.85±0.085 93.74±0.145 72.07±0.271
MixUp 96.91±0.057 94.52±0.112 73.19±0.254
Adv. Tr. 97.06±0.091 93.51±0.130 70.88±0.145
AMP1 97.27±0.015 94.35±0.147 74.40±0.168
GMP3 97.18±0.057 94.33±0.094 74.45±0.256
GMP10 97.09±0.068 94.45±0.158 75.09±0.285

Table 1: Top-1 classification accuracy acc.(%) of VGG16. We run experiments 10
times and report the mean and the standard deviation of the testing accuracy.
Superscript denotes the number of sampled Gaussian noises during training.

1minw Ls(w) + ρmaxδ Ls(w + δ)− Ls(w)
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Implication: GMP on PreActResNet18

Method SVHN CIFAR-10 CIFAR-100

ERM 97.05±0.063 94.98±0.212 75.69±0.303
Dropout 97.20±0.065 95.14±0.148 75.52±0.351
L.S. 97.22±0.087 95.15±0.115 77.93±0.256
Flooding 97.16±0.047 95.03±0.082 75.50±0.234
MixUp 97.26±0.044 95.91±0.117 78.22±0.210
Adv. Tr. 97.23±0.080 95.01±0.085 74.77±0.229
AMP 97.70±0.025 96.03±0.091 78.49±0.308
GMP3 97.43±0.037 95.64±0.053 78.05±0.208
GMP10 97.34±0.058 95.71±0.073 78.07±0.170

Table 2: Top-1 classification accuracy acc.(%) of PreActResNet18.
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Proof Sketch of Theorem 1 I

Recall that

|gen(µ,PWT |S)| ≤
√

2R2

n
I(W̃T ; S) +

∣∣∣∣ E
WT ,S,S′

[γ(WT , S)− γ(WT , S′)]
∣∣∣∣ .

Notice that

I(W̃T ; S) =I
(

W̃T−1 − λTg(WT−1,BT) + NT ; S
)

≤I
(

W̃T−1,−λTg(WT−1,BT) + NT ; S
)

(3)

=I(W̃T−1; S) + I
(
−λTg(WT−1,BT) + NT ; S|W̃T−1

)
(4)

...

≤
T∑

t=1

I
(
−λtg(Wt−1,Bt) + Nt; S|W̃t−1

)
, (5)
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Proof Sketch of Theorem 1 II

Lemma 3

Let X,Y and ∆ be random variables which are all independent of N ∼ N (0, I).
Let Z = Y + ∆, then for any σ and any function f , we have

I(f (Z,X) + σN; X|Y) ≤ 1
2σ2 E

[
||f (Z,X)− E [f (Z,X)]||2

]
Thus,

I(−λtg(Wt−1,Bt) + σtN; S|W̃t−1) ≤ λ2
t

2σ2
t
E
[
||g(Wt−1,Bt)− E [∇w`(Wt−1,Z)]||2

]
=
λ2

t

2σ2
t
E [Vt(Wt−1)]

Putting everything together we have the bound in Theorem 1.
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Summary

. We derive tighter information-theoretic bounds for SGD

. Apply the bound to linear networks and two-layer ReLU networks

. Epoch-wise double descent of gradient dispersion is observed

. Design new regularization schemes, e.g., dynamic gradient clipping and
GMP.
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Thanks for listening!
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