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Contributions

▷ Novel Observation
▷ Over-training with Mixup causes U-shaped test error curve.

▷ Explanation
▷ Mixup induces label noise.

▷ Overfitting to noise occcurs in over-training.
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Background on Mixup

C-class classification setting
▷ Input space: X ⊆ Rd0 ; Label space: Y = {1, 2, . . . , C}.

▷ Training set: S = {(xi, yi)}ni=1, where each yi may be a one-hot vector.

▷ Predictor: fθ : X → [0, 1]C ; Loss: ℓ(θ, x, y);
Empirical risk: R̂S(θ) :=

1
n

∑n
i=1 ℓ(θ, xi, yi).

▷ Mixup synthetic dataset:

S̃λ := {(λx + (1− λ)x′, λy + (1− λ)y′) : (x, y) ∈ S, (x′, y′) ∈ S},

where λ ∈ [0, 1] is drawn from some prescribed distribution, independently
across for all example pairs.

▷ “Mixup loss”, is then

EλR̂S̃λ
(θ) := Eλ

1

|S̃λ|

∑
(x̃,ỹ)∈S̃λ

ℓ(θ, x̃, ỹ)
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Visualization of Mixup

Figure 1: Example for Mixup Argumentation with λ = 0.7. Figure downloaded from
https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup
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Mixup can effectively improve the performance

Figure 2: Test errors for ERM and mixup on the CIFAR experiments from Zhang, Hongyi, et al.
“mixup: Beyond Empirical Risk Minimization.” ICLR 2018.
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Lower Bound on Mixup Loss

Lemma 1

Let ℓ(·) be the cross-entropy loss, and {λ} is drawn i.i.d. from Beta(1, 1) (or the
uniform distribution on [0, 1]). Then for all θ ∈ Θ and for any given training set S that
is balanced,

EλR̂S̃λ
(θ) ≥ C − 1

2C
,

where the equality holds iff fθ(x̃) = ỹ for each synthetic example (x̃, ỹ) ∈ S̃λ.

For example, for 10-class classification tasks, the lower bound has value 0.45.

Ziqiao Wang (EECS, University of Ottawa) Over-Training with Mixup May Hurt Generalization 6 / 18



Observations: As the training loss continuously decays
(left), the testing error first decreases then increases (right).
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Figure 3: ResNet18 on CIFAR10
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Observations
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Figure 4: ResNet18 on SVHN (30%)
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Observations
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Figure 5: ResNet34 on CIFAR100
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Also holds in
▷ different architecture, e.g., VGG16, ResNet34;

▷ different loss function, e.g., MSE;

▷ using other data augmentation (with reduced sample-size), e.g., “random crop”
and “horizontal flip”;

▷ covariant shift, e.g., CIFAR10.1, CIFAR10.2.
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Mixup Induces Label Noise

▷ Let P (Y |X) be the ground-truth conditional distribution. Let f : X → [0, 1]C ,
where fj(x) ≜ P (Y = j|X = x).
e.g., y = argmaxj∈Y fj(x).

▷ Let X̃ ≜ λX + (1− λ)X ′. There are two ways to assign a label to X̃

▷ Ground-truth: Ỹ ∗
h ≜ argmaxj∈Y fj(X̃)

▷ Mixup: Ỹh ≜ argmaxj∈Y P (Ỹ = j|X̃)

where P (Ỹ = j|X̃) = λfj(X) + (1− λ)fj(X
′) for each j.

▷ When the two assignments disagree, Ỹh ̸= Ỹ ∗
h , then Mixup-assigned label Ỹh is

noisy.
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Mixup Induces Label Noise

Theorem 1

For any fixed X , X ′ and X̃ related by X̃ = λX + (1− λ)X ′ for a fixed λ ∈ [0, 1],
the probability of assigning a noisy label is lower bounded by

P (Ỹh ̸= Ỹ ∗
h |X̃) ≥TV(P (Ỹ |X̃), P (Y |X))

≥1

2
sup
j∈Y

∣∣∣fj(X̃)− [(1− λ)fj(X) + λfj(X
′)]
∣∣∣ ,

where TV(·, ·) is the total variation.
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Training with Noisy Labels

Figure 6: Double descent plots from Nakkiran, Preetum, et al. "Deep Double Descent: Where
Bigger Models and More Data Hurt." ICLR 2020.

Reasoning about U-shaped Curve
▷ DNN is no longer over-parameterized (d < m)

▷ Mixup creates noisy labels

Ziqiao Wang (EECS, University of Ottawa) Over-Training with Mixup May Hurt Generalization 13 / 18



NNs learn clean data first

Neural networks are trained with a fraction of random labels, they will
▷ first learn the clean data

▷ then will overfit to the data with noisy labels.
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Figure 7: Convergence on clean data and noisy data from Arora, Sanjeev, et al. "Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural networks."
ICML 2019.
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A Case Study: Regression Setting With Random Feature
Models

▷ Let Y = R so f : X → R.

▷ Let Ỹ ∗ = f(X̃) and Z ≜ Ỹ − Ỹ ∗.
Then Z is the data-dependent noise introduced by Mixup.
e.g., if f is strongly convex with some parameter ρ > 0, then Z ≥ ρ

2λ(1−λ)||X−
X ′||22.

▷ Given S̃ = {(X̃i, Ỹi)}mi=1 and θTϕ(X), where ϕ : X → Rd is fixed and θ ∈ Rd.
Using the MSE loss

R̂S̃(θ) ≜
1

2m

∣∣∣∣∣∣θT Φ̃− ỸT
∣∣∣∣∣∣2
2
,

where Φ̃ = [ϕ(X̃1), ϕ(X̃2), . . . , ϕ(X̃m)] ∈ Rd×m and Ỹ = [Ỹ1, Ỹ2, . . . , Ỹm] ∈
Rm.
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A Case Study: Regression Setting With Random Feature
Models

Given S̃, the expected population risk is

Rt ≜ Eθt,X,Y

∣∣∣∣θTt ϕ(X)− Y
∣∣∣∣2
2
.

Theorem 2 (Dynamics of Population Risk)

Given a synthesized dataset S̃, assume θ0 ∼ N (0, ξ2Id), ||ϕ(X)||2 ≤ C1/2 for some
constant C1 > 0 and |Z| ≤

√
C2 for some constant C2 > 0, then we have

Rt −R∗ ≤ C1

d∑
k=1

[ (
ξ2k + θ∗2k

)
e−2ηµkt︸ ︷︷ ︸

Decresing Term

+
C2

µk

(
1− e−ηµkt

)2
︸ ︷︷ ︸

Increasing Term

]
+ 2

√
C1R∗ζ,

where R∗ = EX,Y

∣∣∣∣Y − θ∗Tϕ(X)
∣∣∣∣2
2
, ζ =

∑d
k=1 max{ξ2k + θ∗2k , C2

µk
} and µk is the

kth eigenvalue of the matrix 1
m Φ̃Φ̃T .
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Gradient Norm in Mixup Training Does Not Vanish

0 50 100 150 200 250 300 350 400
epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Gr
ad

ie
nt

 N
or

m Mixup with 100% Data
Mixup with 30% Data
ERM with 100% Data
ERM with 30% Data

0 100 200 300 400 500 600 700 800
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Gr
ad

ie
nt

 N
or

m

Mixup with 100% Data
Mixup with 30% Data
ERM with 100% Data
ERM with 30% Data

Take-home message:
A wrong objective also helps, only the trajectories/dynamics matter.
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Thank you!

zwang286@uottawa.ca
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