Over-Training with Mixup May Hurt Generalization (ICLR'23)

Zixuan Liu¹* **Ziqiao Wang**¹* Hongyu Guo^{2,1} Yongyi Mao¹

¹University of Ottawa ²National Research Council Canada (NRC)

Contributions

Novel Observation

▷ Over-training with Mixup causes U-shaped test error curve.

Explanation

- ▶ Mixup induces label noise.
- ▷ Overfitting to noise occcurs in over-training.

Background on Mixup

C-class classification setting

- ▷ Input space: $\mathcal{X} \subseteq \mathbb{R}^{d_0}$; Label space: $\mathcal{Y} = \{1, 2, \dots, C\}$.
- ▷ Training set: $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$, where each \mathbf{y}_i may be a one-hot vector.
- ▷ Predictor: $f_{\theta} : \mathcal{X} \to [0, 1]^C$; Loss: $\ell(\theta, \mathbf{x}, \mathbf{y})$; Empirical risk: $\hat{R}_S(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta, \mathbf{x}_i, \mathbf{y}_i)$.

イロト 不得 とくき とくき とうき

Background on Mixup

C-class classification setting

- $\triangleright \text{ Input space: } \mathcal{X} \subseteq \mathbb{R}^{d_0} \text{; Label space: } \mathcal{Y} = \{1, 2, \dots, C\}.$
- ▷ Training set: $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$, where each \mathbf{y}_i may be a one-hot vector.
- Mixup synthetic dataset:

$$\widetilde{S}_{\lambda} := \{ (\lambda \mathbf{x} + (1 - \lambda) \mathbf{x}', \lambda \mathbf{y} + (1 - \lambda) \mathbf{y}') : (\mathbf{x}, \mathbf{y}) \in S, (\mathbf{x}', \mathbf{y}') \in S \},\$$

where $\lambda \in [0, 1]$ is drawn from some prescribed distribution, independently across for all example pairs.

▷ "Mixup loss", is then

$$\mathbb{E}_{\lambda} \hat{R}_{\widetilde{S}_{\lambda}}(\theta) := \mathbb{E}_{\lambda} \frac{1}{|\widetilde{S}_{\lambda}|} \sum_{(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \in \widetilde{S}_{\lambda}} \ell(\theta, \tilde{\mathbf{x}}, \tilde{\mathbf{y}})$$

(日)

Visualization of Mixup

Figure 1: Example for Mixup Argumentation with $\lambda = 0.7$. Figure downloaded from *https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup*

Mixup can effectively improve the performance

Dataset	Model	ERM	mixup
CIFAR-10	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	$5.6 \\ 3.8 \\ 3.7$	$4.2 \\ 2.7 \\ 2.7$
CIFAR-100	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	$25.6 \\ 19.4 \\ 19.0$	$21.1 \\ 17.5 \\ 16.8$

(a) Test errors for the CIFAR experiments.

(b) Test error evolution for the best ERM and *mixup* models.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure 2: Test errors for ERM and mixup on the CIFAR experiments from *Zhang, Hongyi, et al.* "*mixup: Beyond Empirical Risk Minimization.*" *ICLR* 2018.

Lower Bound on Mixup Loss

Lemma 1

Let $\ell(\cdot)$ be the cross-entropy loss, and $\{\lambda\}$ is drawn i.i.d. from Beta(1,1) (or the uniform distribution on [0,1]). Then for all $\theta \in \Theta$ and for any given training set S that is balanced,

$$\mathbb{E}_{\lambda}\hat{R}_{\widetilde{S}_{\lambda}}(\theta) \geq \frac{C-1}{2C},$$

where the equality holds iff $f_{\theta}(\tilde{\mathbf{x}}) = \tilde{\mathbf{y}}$ for each synthetic example $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \in \widetilde{S}_{\lambda}$.

For example, for 10-class classification tasks, the lower bound has value 0.45.

Observations: As the training loss continuously decays (left), the testing error first decreases then increases (right).

Figure 3: ResNet18 on CIFAR10

Observations

Figure 4: ResNet18 on SVHN (30%)

э

Observations

Figure 5: ResNet34 on CIFAR100

Also holds in

- ▷ different architecture, e.g., VGG16, ResNet34;
- different loss function, e.g., MSE;
- ▷ using other data augmentation (with reduced sample-size), e.g., "random crop" and "horizontal flip";
- ▷ covariant shift, e.g., CIFAR10.1, CIFAR10.2.

э

イロト 不得 とくほ とくほう

▷ Let P(Y|X) be the ground-truth conditional distribution. Let $f : \mathcal{X} \to [0,1]^C$, where $f_j(\mathbf{x}) \triangleq P(Y = j|X = \mathbf{x})$. e.g., $\mathbf{y} = \arg \max_{j \in \mathcal{Y}} f_j(\mathbf{x})$.

э

- ▷ Let P(Y|X) be the ground-truth conditional distribution. Let $f : \mathcal{X} \to [0,1]^C$, where $f_j(\mathbf{x}) \triangleq P(Y = j|X = \mathbf{x})$. e.g., $\mathbf{y} = \arg \max_{j \in \mathcal{Y}} f_j(\mathbf{x})$.
- ▷ Let $\widetilde{X} \triangleq \lambda X + (1 \lambda)X'$. There are two ways to assign a label to \widetilde{X} ▷ Ground-truth: $\widetilde{Y}_{h}^{*} \triangleq \arg \max_{j \in \mathcal{Y}} f_{j}(\widetilde{X})$

- ▷ Let P(Y|X) be the ground-truth conditional distribution. Let $f : \mathcal{X} \to [0,1]^C$, where $f_j(\mathbf{x}) \triangleq P(Y = j|X = \mathbf{x})$. e.g., $\mathbf{y} = \arg \max_{j \in \mathcal{Y}} f_j(\mathbf{x})$.
- ▷ Let $\widetilde{X} \triangleq \lambda X + (1 \lambda)X'$. There are two ways to assign a label to \widetilde{X} ▷ Ground-truth: $\widetilde{Y}_{h}^{*} \triangleq \arg \max_{j \in \mathcal{Y}} f_{j}(\widetilde{X})$
 - $$\begin{split} & \triangleright \; \operatorname{Mixup:} \, \widetilde{Y}_{\mathrm{h}} \triangleq \arg \max_{j \in \mathcal{Y}} P(\widetilde{Y} = j | \widetilde{X}) \\ & \text{where} \; P(\widetilde{Y} = j | \widetilde{X}) = \lambda f_j(X) + (1 \lambda) f_j(X') \text{ for each } j. \end{split}$$

- ▷ Let P(Y|X) be the ground-truth conditional distribution. Let $f : \mathcal{X} \to [0,1]^C$, where $f_j(\mathbf{x}) \triangleq P(Y = j|X = \mathbf{x})$. e.g., $\mathbf{y} = \arg \max_{j \in \mathcal{Y}} f_j(\mathbf{x})$.
- ▷ Let $\widetilde{X} \triangleq \lambda X + (1 \lambda)X'$. There are two ways to assign a label to \widetilde{X} ▷ Ground-truth: $\widetilde{Y}_{h}^{*} \triangleq \arg \max_{j \in \mathcal{Y}} f_{j}(\widetilde{X})$
 - $$\begin{split} & \triangleright \; \operatorname{Mixup:} \, \widetilde{Y}_{\mathrm{h}} \triangleq \arg \max_{j \in \mathcal{Y}} P(\widetilde{Y} = j | \widetilde{X}) \\ & \text{where} \; P(\widetilde{Y} = j | \widetilde{X}) = \lambda f_j(X) + (1 \lambda) f_j(X') \text{ for each } j. \end{split}$$
- ▷ When the two assignments disagree, $\widetilde{Y}_h \neq \widetilde{Y}_h^*$, then Mixup-assigned label \widetilde{Y}_h is noisy.

(日)

Theorem 1

For any fixed X, X' and \widetilde{X} related by $\widetilde{X} = \lambda X + (1 - \lambda)X'$ for a fixed $\lambda \in [0, 1]$, the probability of assigning a noisy label is lower bounded by

$$\begin{split} P(\widetilde{Y}_{h} \neq \widetilde{Y}_{h}^{*} | \widetilde{X}) \geq & \operatorname{TV}(P(\widetilde{Y} | \widetilde{X}), P(Y | X)) \\ \geq & \frac{1}{2} \sup_{j \in \mathcal{Y}} \left| f_{j}(\widetilde{X}) - [(1 - \lambda)f_{j}(X) + \lambda f_{j}(X')] \right| \end{split}$$

where $TV(\cdot, \cdot)$ is the total variation.

Training with Noisy Labels

Figure 6: Double descent plots from Nakkiran, Preetum, et al. "Deep Double Descent: Where Bigger Models and More Data Hurt." ICLR 2020.

Reasoning about U-shaped Curve

- ▷ DNN is no longer over-parameterized (d < m)
- Mixup creates noisy labels

NNs learn clean data first

Neural networks are trained with a fraction of random labels, they will

- first learn the clean data
- ▷ then will overfit to the data with noisy labels.

NNs learn clean data first

Neural networks are trained with a fraction of random labels, they will

- ▶ first learn the clean data
- ▷ then will overfit to the data with noisy labels.

Figure 7: Convergence on clean data and noisy data from *Arora, Sanjeev, et al.* "Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks." *ICML 2019.*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Case Study: Regression Setting With Random Feature Models

- $\triangleright \text{ Let } \mathcal{Y} = \mathbb{R} \text{ so } f : \mathcal{X} \to \mathbb{R}.$
- $\begin{array}{l} \triangleright \ \, \operatorname{Let} \, \widetilde{Y}^* = f(\widetilde{X}) \ \text{and} \ Z \triangleq \widetilde{Y} \widetilde{Y}^*. \\ \text{Then} \ Z \ \text{is the data-dependent noise introduced by Mixup.} \\ \text{e.g., if} \ f \ \text{is strongly convex with some parameter} \ \rho > 0, \ \text{then} \ Z \geq \frac{\rho}{2} \lambda (1 \lambda) || X X' ||_2^2. \end{array}$

イロン イボン イヨン イヨン

A Case Study: Regression Setting With Random Feature Models

- $\triangleright \text{ Let } \mathcal{Y} = \mathbb{R} \text{ so } f : \mathcal{X} \to \mathbb{R}.$
- ▷ Let $\widetilde{Y}^* = f(\widetilde{X})$ and $Z \triangleq \widetilde{Y} \widetilde{Y}^*$. Then Z is the data-dependent noise introduced by Mixup. e.g., if f is strongly convex with some parameter $\rho > 0$, then $Z \ge \frac{\rho}{2}\lambda(1-\lambda)||X - X'||_2^2$.
- ▷ Given $\widetilde{S} = \{(\widetilde{X}_i, \widetilde{Y}_i)\}_{i=1}^m$ and $\theta^T \phi(X)$, where $\phi : \mathcal{X} \to \mathbb{R}^d$ is fixed and $\theta \in \mathbb{R}^d$. Using the MSE loss

$$\hat{R}_{\widetilde{S}}(\boldsymbol{\theta}) \triangleq \frac{1}{2m} \left\| \boldsymbol{\theta}^T \widetilde{\boldsymbol{\Phi}} - \widetilde{\mathbf{Y}}^T \right\|_2^2,$$

where $\widetilde{\Phi} = [\phi(\widetilde{X}_1), \phi(\widetilde{X}_2), \dots, \phi(\widetilde{X}_m)] \in \mathbb{R}^{d \times m}$ and $\widetilde{\mathbf{Y}} = [\widetilde{Y}_1, \widetilde{Y}_2, \dots, \widetilde{Y}_m] \in \mathbb{R}^m$.

イロト 不得 とくほ とくほう

A Case Study: Regression Setting With Random Feature Models

Given \widetilde{S} , the expected population risk is

$$R_t \triangleq \mathbb{E}_{\theta_t, X, Y} \left\| \theta_t^T \phi(X) - Y \right\|_2^2.$$

Theorem 2 (Dynamics of Population Risk)

Given a synthesized dataset \widetilde{S} , assume $\theta_0 \sim \mathcal{N}(0, \xi^2 \mathbf{I}_d)$, $||\phi(X)||^2 \leq C_1/2$ for some constant $C_1 > 0$ and $|Z| \leq \sqrt{C_2}$ for some constant $C_2 > 0$, then we have

$$R_t - R^* \le C_1 \sum_{k=1}^d \left[\underbrace{\left(\xi_k^2 + \theta_k^{*2}\right) e^{-2\eta\mu_k t}}_{\text{Decressing Term}} + \underbrace{\frac{C_2}{\mu_k} \left(1 - e^{-\eta\mu_k t}\right)^2}_{\text{Increasing Term}} \right] + 2\sqrt{C_1 R^* \zeta},$$

where $R^* = \mathbb{E}_{X,Y} ||Y - \theta^{*T} \phi(X)||_2^2$, $\zeta = \sum_{k=1}^d \max\{\xi_k^2 + \theta_k^{*2}, \frac{C_2}{\mu_k}\}$ and μ_k is the k^{th} eigenvalue of the matrix $\frac{1}{m} \widetilde{\Phi} \widetilde{\Phi}^T$.

Gradient Norm in Mixup Training Does Not Vanish

Gradient Norm in Mixup Training Does Not Vanish

Take-home message:

A wrong objective also helps, only the trajectories/dynamics matter.

Thank you!

zwang286@uottawa.ca

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・