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N
Contributions

> Novel Observation
> Over-training with Mixup causes U-shaped test error curve.

> Explanation
> Mixup induces label noise.

> Overfitting to noise occcurs in over-training.
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o
Background on Mixup

C-class classification setting
> Input space: X C R%; Label space: J = {1,2,...,C}.

> Training set: S = {(x;,¥;)}/_;, where each y, may be a one-hot vector.

> Predictor: fy : X — [0,1]; Loss: £(6,X,y);
Empirical risk: Rs(6) := 2 i S 0,%i,y;).
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> Training set: S = {(x;,¥;)}/_;, where each y, may be a one-hot vector.

> Predictor: fy : X — [0,1]; Loss: £(6,X,y);
Empirical risk: Rs(6) := 2 i S 0,%i,y;).

> Mixup synthetic dataset:
Sy i= {(x+ (1= VX Ay + (1 - W)y : (xy) € S, (x,y) € S},

where A € [0, 1] is drawn from some prescribed distribution, independently
across for all example pairs.

> “Mixup loss”, is then

EARgA(e) IZEAT Z 6(9,5(,5’)
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-
Visualization of Mixup

Image

Label [1.0, 0.0] [0.0, 1.0] [0.7, 0.3]
cat dog cat dog cat dog

Figure 1: Example for Mixup Argumentation with A = 0.7. Figure downloaded from
https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup
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o
Mixup can effectively improve the performance

Dataset Model ERM

PreAct ResNet-18 5.6
CIFAR-10 WideResNet-28-10 3.8
DenseNet-BC-190 3.7

PreAct ResNet-18 25.6
CIFAR-100 WideResNet-28-10 194
DenseNet-BC-190 19.0
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(a) Test errors for the CIFAR experiments.
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(b) Test error evolution for the best
ERM and mixup models.

Figure 2: Test errors for ERM and mixup on the CIFAR experiments from Zhang, Hongyi, et al.
“mixup: Beyond Empirical Risk Minimization.” ICLR 2018.
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Lower Bound on Mixup Loss

Let ((-) be the cross-entropy loss, and {\} is drawn i.i.d. from Beta(1,1) (or the
uniform distribution on [0, 1]). Then for all § € © and for any given training set S that
is balanced,

N C - 1’

- 2C

where the equality holds iff fo(X) =y for each synthetic example (%,y) € Sh.

ExRg, (6)

For example, for 10-class classification tasks, the lower bound has value 0.45.
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Observations: As the training loss continuously decays
(left), the testing error first decreases then increases (right).

0.9 Best Training Loss le-4 4 Testing Error (%)
—e— ERM 14 —e— ERM
—&— mixup a=1 8 —— mixup a=1
08 13
0.7 12
11
0.6
10
0.5

1 9
30 50 100 200 400 1000 30 50 100 200 400 1000
total num of epochs (log-scale) total num of epochs (log-scale)

Figure 3: ResNet18 on CIFAR10
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Figure 4: ResNet18 on SVHN (30%)

Over-Training with Mixup May Hurt Generalization

8/18



Observations
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Figure 5: ResNet34 on CIFAR100
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Also holds in
> different architecture, e.g., VGG16, ResNet34;

> different loss function, e.g., MSE;

> using other data augmentation (with reduced sample-size), e.g., “random crop”
and “horizontal flip”;

> covariant shift, e.g., CIFAR10.1, CIFAR10.2.
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o
Mixup Induces Label Noise

> Let P(Y|X) be the ground-truth conditional distribution. Let f : X — [0,1]¢,
where f;(x) £ P(Y = j|X =x).
e.g.,y = argmax;ecy f;(x).
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o
Mixup Induces Label Noise

> Let P(Y|X) be the ground-truth conditional distribution. Let f : X — [0,1]¢,
where f;(x) £ P(Y = j|X =x).
e.g.,y = argmax;ecy f;(x).

> Let X £ AX + (1 — A\)X'. There are two ways to assign a label to X
> Ground-truth: Y;* £ arg max;jey f;(X)

> Mixup: Yh = argmaxjey P(Y = j|X)
where P(Y —j|X)—)\fJ( )+ (1 = X\)f;(X’) for each j.

> When the two assignments disagree, Yi #* )7}1*, then Mixup-assigned label Y, is
noisy.
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Mixup Induces Label Noise

For any fixed X, X' and X related by X = AX + (1 = N)X' forafixed X € [0,1],
the probability of assigning a noisy label is lower bounded by

P(Yh # Yy|X) 2TV(P(Y|X), P(Y|X))

>3 sup | £5(5) = [(1= ) 5() + A (0]

J€E

where TV (-, -) is the total variation.
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Training with Noisy Labels

Test Error 07
08 ' width parameter = 3
0.6 —— width parameter = 12
Double Descent 0.6 . —— width parameter = 64
Epoch-wi .
Double Des I
=
04 W
-
A
0]
0.3 =
0.2
0.1
1 10 100 1k
15 30 45 Epoch
ResNet18 Width Parameter pochs

Figure 6: Double descent plots from Nakkiran, Preetum, et al. "Deep Double Descent: Where
Bigger Models and More Data Hurt." ICLR 2020.

Reasoning about U-shaped Curve
> DNN is no longer over-parameterized (d < m)

> Mixup creates noisy labels
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]
NN learn clean data first

Neural networks are trained with a fraction of random labels, they will
> first learn the clean data

> then will overfit to the data with noisy labels.
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Figure 7: Convergence on clean data and noisy data from Arora, Sanjeev, et al. "Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural networks."
ICML 2019.
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A Case Study: Regression Setting With Random Feature
Models

> LetY=Rsof: X —R.

> LetY*=f(X)and Z2Y — Y*.
Then Z is the data-dependent noise introduced by Mixup.
e.g., if f is strongly convex with some parameter p > 0, then Z > SA(1-X)|[X —
XI5
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A Case Study: Regression Setting With Random Feature
Models

> LetY=Rsof: X —R.

> LetY*=f(X)and Z2Y — Y*.
Then Z is the data-dependent noise introduced by Mixup.
e.g., if f is strongly convex with some parameter p > 0, then Z > £A(1—-\)||X —

X'|I3.
> Given S = {(X;,Y)) m, and 07 ¢(X), where ¢ : X — R is fixed and 6 € R
Using the MSE loss
Ra(0) 2 L H9T$ - ?T‘ :
o 2m 2’

where @ = [(X1), #(X2),...,d(Xm)] € R*™and Y = [V1,Ya,...,Y,,] €
R™,
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A Case Study: Regression Setting With Random Feature
Models

Given S, the expected population risk is

Ry 2 By, xv ||076(X) — Y2

Theorem 2 (Dynamics of Population Risk)

|

Given a synthesized dataset S, assume 0y ~ N(0,€21,), ||¢(X)||2 < C41/2 for some
constant Cy > 0 and |Z| < \/C for some constant Cy > 0, then we have

d

Re—R*<Cry | (€ +057) e ™t + %(1 )" | + 20/ iR,
=il Decresing Term

Increasing Term

where R* = Exy ||V — 0*T¢(X )}

kth eigenvalue of the matrix —<I><I>T

o 6= Zk L max{&Z + 652, 02} and puy, is the
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o
Gradient Norm in Mixup Training Does Not Vanish
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Take-home message:

epoch

A wrong objective also helps, only the trajectories/dynamics matter.
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Thank you!

wang286 @uottawa.ca
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