On SkipGram Word Embedding Models with Negative Sampling: Unified Framework and Impact of Noise Distributions

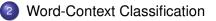
Ziqiao Wang¹ joint work with Yongyi Mao¹, Hongyu Guo², and Richong Zhang³

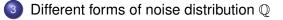
¹University of Ottawa ²National Research Council Canada ³Beihang University

November 27, 2019

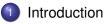
Outline

Introduction





Outline



Word-Context Classification

- 3 Different forms of noise distribution $\mathbb Q$
- 4 Experiments

Introduction

Learning the representations of words is an important task in natural language processing (NLP).

- The advances of word embedding models have enabled numerous successes in NLP applications.
- In the past years, when building a machine learning model for NLP, starting from a pretrained word embedding dictionary has become a nearly standard practice.
- e.g., Word2Vec(SkipGram & CBOW), Glove, ELMo, GPT, BERT, GPT-2, XL-Net, ERNIE, RoBERTa, ...

Brief Introduction to SkipGram

The SkipGram models are among the first word-embedding models and have been widely used since their introduction.

- Distributional semantics: A word's meaning is given by the words that frequently appear close-by
 - "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
 - One of the most successful ideas of modern statistical NLP
- When a word *w* appears in a text, its context is the set of words that appear nearby (within a fixed-size window).
- Use the many contexts of w to build up a representation of w

Brief Introduction to SkipGram

...government debt problems turning into **banking** crises as happened in 2009... ...saying that Europe needs unified **banking** regulation to replace the hodgepodge... ...India has just given its **banking** system a shot in the arm...

These context words will represent banking via a reconstruction loss

Ziqiao Wang (uOttawa)

On SkipGram Word Embedding Models with

A B F A B F

Brief Introduction to SkipGram with Negative Sampling (SGN)

Learning a SkipGram model may incur significant training complexity when the word vocabulary is large.

An elegant approach to by-pass this complexity is through "negative sampling".

- In this approach, a set of word-context pairs are drawn from a "noise" distribution, under which the context is independent of the center word.
- These "noise pairs", or "negative examples", together with the word-context pairs from the corpus, or the "positive examples", are then used to train a binary classifier that is parameterized by the word embeddings.

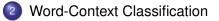
Unanswered questions for SGN

In this work, we ask the following questions.

- Beyond that particular distribution, if one chooses a different noise distribution, is SGN still theoretically justified?
- Is there a general principle underlying SGN that allows us to build new embedding models?
- If so, how does the noise distribution impact the training of such models and their achievable performances?

イロト イポト イラト イラト

Outline



4 Experiments

Notations

- $\textcircled{0} \mathcal{X}: a \text{ vocabulary of words}$
 - $\mathcal{Y}:$ a set of contexts
 - A given training corpus may be parsed into a collection D⁺ of word-context pairs (x, y) from X × Y (using a running window of length 2L + 1)
- 2 \mathbb{P} : an unknown distribution on $\mathcal{X} \times \mathcal{Y}$
 - $\mathbb{P}_{\mathcal{X}}$: the marginal of \mathbb{P} on \mathcal{X}

 $\mathbb{P}_{\mathcal{Y}|x}$: the conditional distribution of *Y* given X = x under \mathbb{P} .

 $\mathbb{Q}_{\mathcal{Y}|x}$: a distribution on \mathcal{Y}

 \mathbb{Q} : the *noise distribution* on $\mathcal{X} \times \mathcal{Y}$

- Given ℚ, we draw word-context pairs i.i.d. from ℚ to form a *noise* sample or negative sample D[−].
- **3** N^+ : the number of pairs in \mathcal{D}^+
 - N^- : the number of pairs in \mathcal{D}^-

The Classifier-Learning Problem

A binary classification problem on samples \mathcal{D}^+ and \mathcal{D}^- :

- Objective: distinguish the word-context pairs drawn from $\mathbb P$ from those drawn from $\mathbb Q$
- *U*: the binary class label associated with each word-context pair $(\mathcal{D}^+: U = 1, \mathcal{D}^-: U = 0)$
- The classification problem is equivalent to learning the conditional distribution p_{U|XY}(·|x, y) from D⁺ and D⁻:

$$p_{U|XY}(1|x,y) := \sigma\left(s(x,y)\right) \tag{1}$$

where $\sigma(\cdot)$ is the logistic function and $s(\cdot)$ is the score function.

The WCC framework

Let $\overline{\mathcal{X}}$ and $\overline{\mathcal{Y}}$ be two vector spaces. Let $f : \mathcal{X} \to \overline{\mathcal{X}}$ and $g : \mathcal{Y} \to \overline{\mathcal{Y}}$ be two functions representing the embedding maps for words and contexts respectively. Let s(x, y) take the form

$$s(x, y) := \mathbf{score} \left(f(x), g(y) \right), \tag{2}$$

the standard cross-entropy loss for this classification problem is

$$\ell = -\sum_{(x,y)\in\mathcal{D}^+} \log \sigma \left(s(x,y) \right) - \sum_{(x,y)\in\mathcal{D}^-} \log \sigma \left(-s(x,y) \right).$$
(3)

and the solution is

$$(f^*, g^*) := \arg\min_{f, g} \ell(f, g) \tag{4}$$

A D N A B N A B N A B N

Theoretical Properties of WCC

Let $\widetilde{\mathbb{P}}$ and $\widetilde{\mathbb{Q}}$ be the empirical word-context distributions observed in \mathcal{D}^+ and \mathcal{D}^- respectively

- [™](x,y) = ^{#(x,y)}/_{N⁺} where #(x,y) is the number of times the word-context pair (x,y) appears in D⁺, and Q[™](x,y) is defined similarly.
- the distribution $\widetilde{\mathbb{Q}}$ covers the distribution $\widetilde{\mathbb{P}}$ if the support $\operatorname{Supp}\left(\widetilde{\mathbb{P}}\right)$ of $\widetilde{\mathbb{P}}$ is a subset of the support $\operatorname{Supp}\left(\widetilde{\mathbb{Q}}\right)$ of $\widetilde{\mathbb{Q}}$.

A D N A B N A B N A B N

Theorem 1

Suppose that $\widetilde{\mathbb{Q}}$ covers $\widetilde{\mathbb{P}}$. Then the following holds.

- 1 The loss ℓ , as a function of *s*, is convex in *s*.
- 2 If f and g are sufficiently expressive, then there is a unique configuration s* of s that minimizes ℓ(s), and the global minimizer s* of ℓ(s) is given by

$$s^*(x,y) = \log \frac{\widetilde{\mathbb{P}}(x,y)}{\widetilde{\mathbb{Q}}(x,y)} + \log \frac{N^+}{N^-}$$

for every $(x, y) \in \mathcal{X} \times \mathcal{Y}$.

Proof sketch.

$$p_U(U=1) = \frac{N^+ \widetilde{\mathbb{P}}(x, y)}{N^+ \widetilde{\mathbb{P}}(x, y) + N^- \widetilde{\mathbb{Q}}(x, y)}$$

Recall that $\ell - H(p_U) = KL(p_U||p_{U|XY})$, where $H(p_U)$ is the entropy of p_U and $KL(p_U||p_{U|XY})$ is the Kullback-Leibler divergence between p_U and $p_{U|XY}$. To make $KL(p_U||p_{U|XY}) = 0$, we have

$$p_U(U=1) = \frac{N^+ \widetilde{\mathbb{P}}(x, y)}{N^+ \widetilde{\mathbb{P}}(x, y) + N^- \widetilde{\mathbb{Q}}(x, y)} = \sigma \left(s^*(x, y)\right) = \frac{1}{1 + \exp(s^*(x, y))}$$
(6)

which indicates $s^*(x, y) = \log \frac{\widetilde{\mathbb{P}}(x, y)}{\widetilde{\mathbb{Q}}(x, y)} + \log \frac{N^+}{N^-}$.

(5)

Corollary 1

Let $N^+ = n$ and $N^- = kn$. Suppose that \mathbb{Q} covers \mathbb{P} , and that f and g are sufficiently expressive. Then it is possible to construct a distribution $\widehat{\mathbb{P}}$ on $\mathcal{X} \times \mathcal{Y}$ using f^*, g^*, k , and \mathbb{Q} such that for every $(x, y) \in \mathcal{X} \times \mathcal{Y}, \widehat{\mathbb{P}}(x, y)$ converges to $\mathbb{P}(x, y)$ in probability as $n \to \infty$.

Proof sketch.

Suppose we already have f^*, g^*, k , and \mathbb{Q} , recall that $s^*(x, y) = \log \frac{\widetilde{\mathbb{P}}(x, y)}{\widetilde{\mathbb{Q}}(x, y)} - \log k$ and $s^*(x, y) = \langle f^*(x), g^*(y) \rangle$. We can construct $\widehat{\mathbb{P}}$ as

$$\widehat{\mathbb{P}}(x, y) = \underbrace{\exp\left\{\langle f^*(x), g^*(y) \rangle + \log k\right\}}_{A(x,y)} \cdot \mathbb{Q}(x, y)$$
$$= A(x, y) \cdot \widetilde{\mathbb{Q}}(x, y) \cdot \frac{\mathbb{Q}(x, y)}{\widetilde{\mathbb{Q}}(x, y)}$$
$$= \widetilde{\mathbb{P}}(x, y) \cdot \frac{\mathbb{Q}(x, y)}{\widetilde{\mathbb{Q}}(x, y)}$$
$$= \mathbb{P}(x, y) \cdot \frac{\widetilde{\mathbb{P}}(x, y)}{\mathbb{P}(x, y)} \cdot \frac{\mathbb{Q}(x, y)}{\widetilde{\mathbb{Q}}(x, y)}$$

Ziqiao Wang (uOttawa)

On SkipGram Word Embedding Models with

(/

Lemma 1

The derivative of the loss function ℓ with respect to s(x, y) is

$$\frac{\partial \ell}{\partial s(x,y)} = \sigma\left(s(x,y)\right)\left(N^{-}\widetilde{\mathbb{Q}}(x,y) - e^{-s(x,y)}N^{+}\widetilde{\mathbb{P}}(x,y)\right)$$

Outline

Different forms of noise distribution $\ensuremath{\mathbb{Q}}$

< ロ > < 同 > < 回 > < 回 >

SGN Model

Let $\ensuremath{\mathbb{Q}}$ factorize in the following form

$$\mathbb{Q}(x,y) = \widetilde{\mathbb{P}}_{\mathcal{X}}(x)\mathbb{Q}_{\mathcal{Y}}(y)$$
(8)

The following result follows from Theorem 1.

Corollary 2

In an unconditional SGN model, suppose that f and g are sufficiently expressive. Let $N^+=n$ and $N^-=kn$. Then the global minimizer of loss function (3) is given by

$$s^{*}(x,y) = \overline{x} \cdot \overline{y} = \log \frac{\widetilde{\mathbb{P}}(x,y)}{\widetilde{\mathbb{P}}_{\mathcal{X}}(x)\widetilde{\mathbb{Q}}_{\mathcal{Y}}(y)} - \log k$$
(9)

November 27, 2019

20/33

As a special case when $\widetilde{\mathbb{Q}}_{\mathcal{Y}} = \widetilde{\mathbb{P}}_{\mathcal{Y}}$, the term $\log \frac{\widetilde{\mathbb{P}}(x,y)}{\widetilde{\mathbb{P}}_{\mathcal{X}}(x)\widetilde{\mathbb{Q}}_{\mathcal{Y}}(y)}$ is the well-known "pointwise mutual information" (PMI)

Ziqiao Wang (uOttawa)

SGN Model

It is natural to consider the following forms of $\mathbb{Q}_{\mathcal{Y}}$ in unconditional SGN.

- **"uniform SGN" (ufSGN)**: Let $\mathbb{Q}_{\mathcal{Y}}$ be the discrete uniform distribution over \mathcal{Y} , that is, $\mathbb{Q}_{\mathcal{Y}}(y) = 1/|\mathcal{Y}|$.
- **2** "**unigram SGN**" (**ugSGN**): Let $\mathbb{Q}_{\mathcal{Y}}$ be empirical distribution $\mathbb{P}_{\mathcal{Y}}$ of context word in the corpus, that is, $\mathbb{Q}_{\mathcal{Y}}(y) = f_y / \sum_{y \in \mathcal{Y}} f_y$, where f_y is the frequency at which the context word *y* has occurred in the corpus.
- **3** "3/4-unigram SGN" (3/4-ugSGN): Let $\mathbb{Q}_{\mathcal{Y}}$ be defined by $\mathbb{Q}_{\mathcal{Y}}(y) = f_y^{3/4} / \sum_{y \in \mathcal{Y}} f_y^{3/4}$. This is precisely the noise distribution used in vanilla SGN.

Conditional SGN Model

In this case, we factorize ${\ensuremath{\mathbb Q}}$ as

$$\mathbb{Q}(x,y) = \widetilde{\mathbb{P}}_{\mathcal{X}}(x)\mathbb{Q}_{\mathcal{Y}|x}(y)$$

where $\mathbb{Q}_{\mathcal{Y}|x}(\cdot)$ varies with x. Note that such form of \mathbb{Q} includes all possible distributions \mathbb{Q} whose marginals $\mathbb{Q}_{\mathcal{X}}$ on the center word are the same as $\widetilde{\mathbb{P}}_{\mathcal{X}}$.

- A TE N - A TE N

Conditional SGN Model

Remark 1

In Theorem 1 and Corollary 1, the WCC framework is justified for any choice of empirical noise distribution $\widetilde{\mathbb{Q}}$ that covers $\widetilde{\mathbb{P}}$. Consider some $(x, y) \in \text{Supp}(\widetilde{\mathbb{Q}}) \setminus \text{Supp}(\widetilde{\mathbb{P}})$, namely, (x, y) is "covered" by $\widetilde{\mathbb{Q}}$ but not by $\widetilde{\mathbb{P}}$. By Lemma 1, the gradient is

$$\frac{\partial \ell}{\partial s(x,y)} = \sigma(s(x,y)) \cdot N^{-} \widetilde{\mathbb{Q}}(x,y)$$

This may result in slow training.

4 3 5 4 3 5

4 A N

Conditional SGN Model

Hypothesis 1

The best $\widetilde{\mathbb{Q}}$ is the one that barely covers $\widetilde{\mathbb{P}}$, namely, equal to $\widetilde{\mathbb{P}}$.

Under this hypothesis, we wish to choose $\mathbb{Q}_{\mathcal{Y}|x}$ to be equal to, or at least to closely resemble, $\mathbb{P}_{\mathcal{Y}|x}$.

Consider a version of $\left\{ \widetilde{\mathbb{Q}}_{\mathcal{Y}|x}^{t} : x \in \mathcal{X} \right\}$ that varies with training iteration *t*:

- Suppose training is such that the loss computed for a batch converges and that Qⁱ_{𝒴|} converges to P̃_{𝒴|} for each 𝑥 ∈ 𝒳.
- The empirical distribution of the noise word-context pair seen during the entire training process is then

$$\widehat{\mathbb{Q}}^T(x,y) = \sum_{t=1}^T \widetilde{\mathbb{Q}}^t_{\mathcal{Y}|x}(y)\widetilde{\mathbb{P}}_{\mathcal{X}}(x)/T.$$

Under the above stated assumptions, it is easy to see that $\widehat{\mathbb{Q}}^T$ must converge to $\widetilde{\mathbb{P}}$ with increasing *T*.

In this case, when *T* is large enough, we can regard training as a version of mini-batched SGD with the noise distribution \mathbb{Q} chosen as a distribution arbitrarily close to $\widetilde{\mathbb{P}}$, or a conditional SGN with $\mathbb{Q}_{\mathcal{Y}|x}$ arbitrarily close to $\widetilde{\mathbb{P}}_{\mathcal{Y}|x}$.

This observation motivates us to design the "Conditional Adaptive SGN" (caSGN) model. The idea is to parameterize Q̃_{𝒴|𝑥} using a neural network and force learning with mini-batched SGD to make Q̃_{𝒴|𝑥} converge to P̃_{𝒴|𝑥}.

A D N A B N A B N A B N

Inspired by GAN, we parametrize $\widetilde{\mathbb{Q}}_{\mathcal{Y}|x}$ using an additional latent variable *Z* that takes value from a vector space \mathcal{Z} , and model *Y* as being *generated* from (*X*,*Z*) or simply *Z*:

(a) caSGN1 (b) caSGN2 (c) caSGN3 (d) aSGN

Figure 1: Generators of the adaptive SkipGram model

Since in every language the context always depends on the center word, using such Figure 1(d), $\widetilde{\mathbb{Q}}$ tend not to converge to $\widetilde{\mathbb{P}}$ by construction, except for very small training sample, to which model over-fits.

Each of these generators can be implemented as a probabilistic neural network G (namely that the output of G is a random variable depending on its input). Then one can formulate the loss function in a way similar to GAN, e.g. in caSGN3 (Figure 1(c)),

$$\ell_{caSGN3} = -\mathbb{E}_{x \sim \widetilde{\mathbb{P}}_{\mathcal{X}}} \left\{ \mathbb{E}_{y \sim \widetilde{\mathbb{P}}_{\mathcal{Y}|x}} \log \sigma(s(x, y)) + \mathbb{E}_{z \sim G_{X|Z}(x), y \sim G_{Y|XZ}(x, z)} \log(-\sigma(s(x, y))) \right\}$$
(10)

The min-max optimization problem can be defined as

$$(f^*, g^*, G^*) := \arg\min_{f,g} \max_G \ell_{caSGN3}(f, g, G)$$
(11)

Outline

- Word-Context Classification
- 3 Different forms of noise distribution $\mathbb Q$

WordSim Similarity

Table 1: Spearman's ρ (*100) on the word similarity tasks (text8).

Models	WS-353	WS-SIM	WS-REL	MTurk-287	MTurk-771	RW	MEN	MC	RG	SimLex
SGN	70.58	74.54	68.10	64.29	55.59	36.63	62.16	60.82	60.17	29.69
ACE	71.49	74.61	69.50	65.52	56.63	37.85	62.75	62.65	62.39	30.37
aSGN	71.12	74.76	68.82	65.67	56.47	37.58	62.63	62.36	62.36	30.49
caSGN1	71.72	75.11	69.77	65.63	56.63	37.63	63.40	62.54	64.18	30.36
caSGN2	72.02	75.05	69.64	65.44	57.02	37.61	63.36	62.86	64.63	30.79
caSGN3	71.74	74.61	69.63	65.57	56.56	37.78	62.69	62.61	62.52	30.31

Table 2: Spearman's ρ (*100) on the word similarity tasks (wiki).

Models	WS-353	WS-SIM	WS-REL	MTurk-287	MTurk-771	RW	MEN	MC	RG	SimLex
SGN	67.49	74.61	61.51	63.00	59.24	39.99	68.73	64.47	69.59	31.37
ACE	71.03	76.23	66.24	63.05	60.27	40.02	67.55	76.60	70.01	31.10
aSGN	70.66	75.69	65.69	65.14	61.22	39.81	68.99	77.38	73.67	31.58
caSGN1	71.56	76.05	65.37	63.05	61.63	40.74	69.72	80.07	77.58	31.27
caSGN2	70.57	73.84	65.83	65.26	62.28	41.24	70.93	71.57	73.05	30.45
caSGN3	70.27	74.93	65.26	65.98	59.52	41.55	70.05	75.95	73.52	31.40

3

(日)

Word Analogy

Table 3: Accuracy on the word analogy task (text8).

Model	Semantic	Syntactic	Total
SGN	20.50	26.77	24.16
ACE	20.43	28.25	25.00
aSGN	20.84	27.86	24.94
caSGN1	21.25	28.30	25.36
caSGN2	21.56	27.79	25.20
caSGN3	20.43	27.76	24.71

Table 4: Accuracy on the word analogy task (wiki).

Model	Semantic	Syntactic	Total	
SGN	27.28	35.52	31.77	
ACE	27.62	35.30	31.81	
aSGN	35.24	38.66	37.10	
caSGN1	31.71	38.32	35.31	
caSGN2	37.00	39.96	38.61	
caSGN3	41.21	39.24	40.14	

3

イロン イ理 とく ヨン イヨン

Experiments

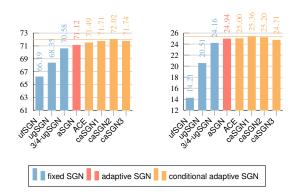


Figure 2: Left figure is Spearman's ρ (*100) on WS-353 and Right figure is the total accuracy on Google Analogy

Experiments

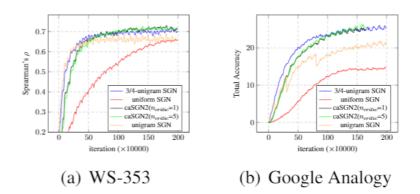


Figure 3: Curve of Spearman's ρ and the total accuracy. Notation n_{critic} is the number of iterations apply to the discriminator before per generator iteration