Information-Theoretic Analysis for Generalization of Learning Algorithms
 A Short Tutorial

婳
 uOttawa

Ziqiao Wang
University of Ottawa

School of Electrical Engineering and Computer Science
December 23, 2023

Preliminaries on Information Theory
Background on Information-Theoretic Generalization Bounds
Information-Theoretic Generalization Bounds for Black-Box Algorithms
Information-Theoretic Bounds in Stochastic Convex Optimization
Information-Theoretic Generalization Bounds for SGD
Information-Theoretic Analysis Beyond Supervised Learning
References

Preliminaries on Information Theory

- Entropy: $H(X)=\mathbb{E}_{P_{X}}\left[\log \frac{1}{P(X)}\right], H(X, Y)=\mathbb{E}_{P_{X, Y}}\left[\log \frac{1}{P(X, Y)}\right]$, $H(X \mid Y)=\mathbb{E}_{P_{X, Y}}\left[\log \frac{1}{P(X \mid Y)}\right]$
- For discrete $X, H(X) \geq 0$
- $H(X, Y)=H(X \mid Y)+H(Y)$
- Conditioning reduces entropy: $H(X \mid Y) \leq H(X)$
- For discrete $X, H(X) \leq \log |\mathcal{X}|$
- Relative Entropy: $\mathrm{D}_{\mathrm{KL}}(Q \| P)=\mathbb{E}_{Q}\left[\log \frac{Q(X)}{P(X)}\right]$
- $\mathrm{D}_{\mathrm{KL}}(Q \| P) \geq 0$ with equality holds iff $Q=P$.
- Usually $\mathrm{D}_{\mathrm{KL}}(Q \| P) \neq \mathrm{D}_{\mathrm{KL}}(P \| Q)$
- Mutual Information: $I(X ; Y)=\mathbb{E}_{P_{X, Y}}\left[\log \frac{P(X, Y)}{P(X) P(Y)}\right]=\mathrm{D}_{\mathrm{KL}}\left(P_{X, Y} \| P_{X} P_{Y}\right)$.
- $I(X ; Y) \geq 0$ with equality holds iff $X \Perp Y$.
- $I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)$.
- $I(X ; Y)=I(Y ; X)$
- $I(X ; Y)=\mathbb{E}_{P_{X, Y}}\left[\log \frac{P(X \mid Y)}{P(X)}\right]=\mathbb{E}_{P_{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(P_{X \mid Y} \| P_{X}\right)\right]$
- Conditional Mutual Information and Disintegrated Mutual Information:

$$
\begin{aligned}
& I(X ; Y \mid Z)=\mathbb{E}_{P_{X, Y, Z}}\left[\log \frac{P(X, Y \mid Z)}{P(X \mid Z) P(Y \mid Z)}\right]=H(X \mid Z)-H(X \mid Y, Z) \\
& I^{z}(X ; Y)=\mathbb{E}_{P_{X, Y \mid Z=z}}\left[\log \frac{P(X, Y \mid Z=z)}{P(X \mid Z=z) P(Y \mid Z=z)}\right]
\end{aligned}
$$

- $\mathbb{E}_{Z}\left[I^{Z}(X ; Y)\right]=I(X ; Y \mid Z)$

Venn diagram. Credit: https://en.wikipedia.org/wiki/Mutual_information

Useful Properties

- Chain-rule:
- $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$
- $I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, \ldots, X_{1}\right)$
- $\mathrm{D}_{\mathrm{KL}}\left(Q_{X, Y} \| P_{X, Y}\right)=\mathrm{D}_{\mathrm{KL}}\left(Q_{X} \| P_{X}\right)+\mathrm{D}_{\mathrm{KL}}\left(Q_{Y \mid X} \| P_{Y \mid X}\right)$
- Data-processing inequality (DPI):

If $X-Y-Z$ forms a Markov chain (i.e. $P_{X, Z \mid Y}=P_{X \mid Y} P_{Z \mid Y}$), then

$$
I(X ; Y) \geq I(X ; Z)
$$

e.g., $(X, Y)-f(X, Y)-Z$ is a Markov chain : $I(X, Y ; Z) \leq I(f(X, Y) ; Z)$

- Other useful stuff: Fano's inequality, KL divergence between two Gaussian, Gaussian distribution maximizes the entropy over all distributions with the same variance, ...
- Textbook for beginners: Thomas M. Cover and Joy A. Thomas. Elements of Information Theory, Wiley-Interscience, 2006.

Advanced Tools: Golden Formula

Lemma 1 (Variational Representation of Mutual Information)

For two random variables X and Y, we have

$$
I(X ; Y)=\inf _{Q} \mathbb{E}_{P_{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(P_{X \mid Y} \| Q\right)\right]
$$

where the infimum is achieved at $Q=P_{X}$.
Note that $I(X ; Y)=\mathbb{E}_{P_{Y}}\left[\mathrm{D}_{\mathrm{KL}}\left(P_{X \mid Y} \| P_{X}\right)\right]$

Advanced Tools: DV Lemma/Change of Measure Ineq.

Lemma 2 (Donsker and Varadhan's variational formula)
For any measurable function $f: \Theta \rightarrow \mathbb{R}$, we have

$$
\mathrm{D}_{\mathrm{KL}}(Q \| P)=\sup _{f} \mathbb{E}_{\theta \sim Q}[f(\theta)]-\log \mathbb{E}_{\theta \sim P}[\exp f(\theta)]
$$

proof. Define the density of the Gibbs measure $P_{f}: P_{f}(\theta)=\frac{e^{f(\theta)}}{\mathbb{E}_{\theta \sim P}\left[e^{f(\theta)]}\right.} P(\theta)$.

$$
\begin{aligned}
\mathrm{D}_{\mathrm{KL}}\left(Q \| P_{f}\right)=\mathbb{E}_{Q}\left[\log \frac{Q}{P_{f}}\right] & =\mathbb{E}_{Q}[\log Q]-\mathbb{E}_{Q}\left[\log \frac{e^{f(\theta)}}{\mathbb{E}_{P}\left[e^{f(\theta)}\right]} P\right] \\
& =\mathbb{E}_{Q}[\log Q]-\mathbb{E}_{Q}[f(\theta)]-\mathbb{E}_{Q}[\log P]+\log \mathbb{E}_{P}\left[e^{f(\theta)}\right] \\
& =\mathrm{D}_{\mathrm{KL}}(Q \| P)-\mathbb{E}_{\theta \sim Q}[f(\theta)]+\log \mathbb{E}_{\theta \sim P}[\exp f(\theta)] \\
& \geq 0
\end{aligned}
$$

- Polyanskiy, Y. and Wu, Y.. Information Theory: From Coding to Learning, Cambridge University Press, 2023 (book draft).

Background on Information-Theoretic Generalization Bounds

- A learning algorithm $\mathcal{A}: S \rightarrow W$ i.e. mapping training sample S to a hypothesis W.
- Gen. err. $=\mathbb{E}[$ Test err. - Train err. $] \leq$ Gen. bound.
- A learning algorithm $\mathcal{A}: S \rightarrow W$ i.e. mapping training sample S to a hypothesis W.
- Gen. err. $=\mathbb{E}[$ Test err. - Train err. $] \leq$ Gen. bound.

Formal Notations:

- Training dataset: $S=\left\{Z_{i}\right\}_{i=1}^{n} \in \mathcal{Z}$, drawn i.i.d. from μ
- Hypothesis space: $\mathcal{W} \subseteq \mathbb{R}^{d}$
- Learning algorithm: $\mathcal{A}: \mathcal{Z}^{n} \rightarrow \mathcal{W}$ by $P_{W \mid S}$
- Loss: $\ell: \mathcal{W} \times \mathcal{Z} \rightarrow \mathbb{R}^{+}$
- We're interested in
- Population risk: $L_{\mu}(w) \triangleq \mathbb{E}_{Z \sim \mu}[\ell(w, Z)]$
- Empirical risk: $L_{S}(w) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell\left(w, Z_{i}\right)$
- Expected generalization error: $\mathcal{E}_{\mu}(\mathcal{A}) \triangleq \mathbb{E}_{W, S}\left[L_{\mu}(W)-L_{S}(W)\right]$

Before Xu's bound:

- Russo, D. and Zou, J.. Controlling bias in adaptive data analysis using information theory. AISTATS 2016.
Russo, D., and Zou, J. How much does your data exploration overfit? Controlling bias via information usage. TIT 2019.
- Raginsky, M. et al. Information-theoretic analysis of stability and bias of learning algorithms. ITW 2016.

Lemma 3 (Xu and Raginsky [2017])

Assume the loss $\ell(w, Z)$ is R-subgaussian ${ }^{1}$ for any $w \in \mathcal{W}$. The generalization error of \mathcal{A} is bounded by

$$
|\mathcal{E}| \leq \sqrt{\frac{2 R^{2}}{n} I(W ; S)}
$$

[^0]- Step 1: Finding the target.

$$
\begin{aligned}
\mathcal{E}=\mathbb{E}_{S, W}\left[L_{\mu}(W)-L_{S}(W)\right] & =\mathbb{E}_{S, W}\left[\mathbb{E}_{S^{\prime}}\left[L_{S^{\prime}}(W)\right]\right]-\mathbb{E}_{S, W}\left[L_{S}(W)\right] \\
& =\mathbb{E}_{P_{W} \otimes P_{S^{\prime}}}\left[L_{S^{\prime}}(W)\right]-\mathbb{E}_{P_{W, S}}\left[L_{S}(W)\right]
\end{aligned}
$$

- Step 2: Selecting the measurable function f.

Recall DV Lemma:

$$
\begin{aligned}
I(W, S) & =\mathrm{D}_{\mathrm{KL}}\left(P_{W, S} \| P_{W} \otimes P_{S^{\prime}}\right) \\
& \geq \sup _{f} \mathbb{E}_{(W, S) \sim P_{W, S}}[f(W, S)]-\log \mathbb{E}_{\left(W, S^{\prime}\right) \sim P_{W} \otimes P_{S^{\prime}}}\left[\exp f\left(W, S^{\prime}\right)\right]
\end{aligned}
$$

Let $f(W, S)=t L_{S}(W)$ for some $t>0$.

- Step 3: Bounding the CGF.

If $\ell(w, Z)$ is R-SubGaussian, $f\left(w, S^{\prime}\right)=L_{S^{\prime}}(w)$ is R / \sqrt{n}-SubGaussian:

$$
\log \mathbb{E}_{W, S^{\prime}}\left[\exp \lambda\left(L_{S^{\prime}}-\mathbb{E}\left[L_{S^{\prime}}\right]\right)\right] \leq t^{2} R^{2} / 2 n
$$

Thus, $\log \mathbb{E}_{W, S^{\prime}}\left[\exp t L_{S^{\prime}}(W)\right] \leq t \mathbb{E}_{W, S^{\prime}}\left[L_{S^{\prime}}(W)\right]+t^{2} R^{2} / 2 n$.

- Step 4: Optimizing the bound.

$$
\begin{aligned}
& I(W, S) \geq \sup _{t>0} t\left(\mathbb{E}_{(W, S) \sim P_{W, S}}\left[L_{S}(W)\right]-\mathbb{E}_{\left(W, S^{\prime}\right) \sim P_{W} \otimes P_{S^{\prime}}}\left[L_{S^{\prime}}(W)\right]\right)-t^{2} R^{2} / 2 n \\
& \Longrightarrow \mathbb{E}_{(W, S) \sim P_{W, S}}\left[L_{S}(W)\right]-\mathbb{E}_{\left(W, S^{\prime}\right) \sim P_{W} \otimes P_{S^{\prime}}}\left[L_{S^{\prime}}(W)\right] \leq \inf _{t} \frac{I(W, S)}{t}+\frac{t R^{2}}{2 n}= \\
& \sqrt{\frac{2 R^{2}}{n} I(W, S)} \\
& \Longrightarrow|\mathcal{E}| \leq \sqrt{\frac{2 R^{2}}{n} I(W, S)}
\end{aligned}
$$

Limitations of Xu's bound

$I(W ; S) \rightarrow \infty$ e.g., \mathcal{A} is deterministic $\Longrightarrow I(W ; S)=H(W)-H(W \mid S)=H(W)$. Some previous efforts:

- Chaining Method: $3 \sqrt{2} \sum_{k=k_{1}}^{\infty} 2^{-k} \sqrt{I\left([W]_{k} ; Z_{i}\right)}$ Asadi, A. et al. Chaining mutual information and tightening generalization bounds. NeurIPS 2018.
- Individual Technique/Sample-Wise Bound: $\frac{1}{n} \sum_{i=1}^{n} \sqrt{I\left(W ; Z_{i}\right)}$ Bu, Y. et al. Tightening Mutual Information Based Bounds on Generalization Error. ISIT 2019.
- Random Subset Technique: $\mathbb{E} \sqrt{\frac{1}{n-m} I^{S_{J}}\left(W ; S_{J}^{c}\right)}$

Negrea, J. et al. Information-theoretic generalization bounds for SGLD via data-dependent estimates. NeurIPS 2019.

- Solved by CMI: $\sqrt{\frac{1}{n} I(W ; U \mid \widetilde{Z})} \leq \mathcal{O}(1)$ Steinke, T. and Zakynthinou, L.. Reasoning about generalization via conditional mutual information. COLT 2020.

Idea:

Quantization of W. Credit: Zhou R, et al. Stochastic Chaining and Strengthened Information-Theoretic Generalization Bounds ISIT 2022.

Chaining Method

- Step 1: Finding the target. For any integers k_{1} and k_{0} such that $k_{1}>k_{0}$, let $\mathcal{E}(W)=L_{\mu}(W)-L_{S}(W)$, we have

$$
\mathcal{E}(W)=\mathcal{E}\left([W]_{k_{0}}\right)+\sum_{k=k_{0}+1}^{k_{1}}\left(\mathcal{E}\left([W]_{k}\right)-\mathcal{E}\left([W]_{k-1}\right)\right)+\mathcal{E}(W)-\mathcal{E}\left([W]_{k_{1}}\right)
$$

We require $\mathbb{E}\left[\mathcal{E}\left([W]_{k_{0}}\right)\right]=0$ and $\lim _{k_{1} \rightarrow \infty} \mathcal{E}\left([W]_{k_{1}}\right)=\mathcal{E}(W)$.
Let $k_{1} \rightarrow \infty$ and taking expectation over $(S, W) \sim P_{S, W}$ for both sides of the equation above, we have

$$
\begin{equation*}
\mathcal{E}=\sum_{k=k_{0}+1}^{\infty} \mathbb{E}_{S,[W]_{k},[W]_{k-1}}\left[\left(\mathcal{E}\left([W]_{k}\right)-\mathcal{E}\left([W]_{k-1}\right)\right)\right] . \tag{1}
\end{equation*}
$$

- Step 2: Selecting f, Q and P.

$$
f=t \cdot\left(\mathcal{E}\left([W]_{k}\right)-\mathcal{E}\left([W]_{k-1}\right)\right), \quad Q=P_{S,[W]_{k},[W]_{k-1}}, \quad P=P_{S} \otimes P_{[W]]_{k},[W]_{k-1}}
$$

Chaining Method

- Step 3: Bounding the CGF.
$\mathcal{E}\left([W]_{k}\right)-\mathcal{E}\left([W]_{k-1}\right)$ is $d^{2}\left([W]_{k},[W]_{k-1}\right)$-subGaussian:

$$
\mathrm{CGF}=\log \mathbb{E}_{S^{\prime}}\left[\mathbb{E}_{[W]_{k},[W]_{k-1}}\left[e^{t\left(\mathcal{E}\left([W]_{k}\right)-\mathcal{E}\left([W]_{k-1}\right)\right)}\right]\right] \leq \frac{t^{2} \mathbb{E}\left[d^{2}\left([W]_{k},[W]_{k-1}\right)\right]}{2}
$$

- Step 4: Optimizing the bound.

$$
\mathcal{E} \leq \sum_{k=k_{0}+1}^{\infty} \sqrt{2 \mathbb{E}_{[W]_{k},[W]_{k-1}}\left[d^{2}\left([W]_{k},[W]_{k-1}\right)\right] I\left([W]_{k},[W]_{k-1} ; S\right)}
$$

Notice that $S-W-[W]_{k}-[W]_{k-1}$ is a Markov chain, so $I\left([W]_{k},[W]_{k-1} ; S\right)=I\left([W]_{k} ; S\right)+I\left([W]_{k},[W]_{k-1} ; S \mid[W]_{k}\right)=I\left([W]_{k},[W]_{k-1} ; S\right)$.

Special case: 2^{-k}-partition, $d\left([W]_{k}, W\right)<2^{-k}$, then $d\left([W]_{k}, W\right)+d\left([W]_{k-1}, W\right) \leq 2^{-k}+2^{-(k-1)}=3 \times 2^{-k}$.

Individual Technique

－Step 1：Finding the target．

$$
\mathbb{E}_{W, S}\left[L_{\mu}(W)-L_{S}(W)\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, Z_{i}}\left[\mathbb{E}_{Z^{\prime}}\left[\ell\left(W, Z^{\prime}\right)\right]-\ell\left(W, Z_{i}\right)\right]
$$

－Step 2：Selecting f, Q and P ．

$$
f=t \cdot\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W, Z^{\prime}\right)\right]-\ell\left(W, Z_{i}\right)\right), \quad Q=P_{W, Z_{i}}, \quad P=P_{Z^{\prime}} \otimes P_{W}
$$

－Step 3：Bounding the CGF．
$\ell\left(W, Z_{i}^{\prime}\right)$ is R－subGaussian： $\log \mathbb{E}_{Z^{\prime}}\left[\mathbb{E}_{W}\left[e^{\left.t\left(\mathbb{E}_{Z^{\prime}} \ell \ell\left(W, Z^{\prime}\right)\right]-\ell\left(W, Z_{i}\right)\right)}\right]\right] \leq \frac{t^{2} R^{2}}{2}$
－Step 4：Optimizing the bound．

$$
\mathcal{E} \preceq \frac{1}{n} \sum_{i=1}^{n} \sqrt{I\left(W ; Z_{i}\right)} \leq \sqrt{\frac{I(W ; S)}{n}}
$$

Random Subset Technique

- Step 1: Finding the target.

Let $J \subseteq[n],|J|=m$,

$$
\begin{aligned}
\mathbb{E}_{W, S}\left[L_{\mu}(W)-L_{S}(W)\right] & =\mathbb{E}_{W, S}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W, Z^{\prime}\right)\right]-\ell\left(W, Z_{i}\right)\right)\right] \\
& =\mathbb{E}_{J}\left[\mathbb{E}_{W, S_{J}}\left[\frac{1}{m} \sum_{i=1}^{m}\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W, Z^{\prime}\right)\right]-\ell\left(W, S_{J i}^{c}\right)\right)\right]\right]
\end{aligned}
$$

- Step 2: Selecting f, Q and P.

$$
f=t \cdot\left(\frac{1}{m} \sum_{i=1}^{m}\left(\mathbb{E}_{Z^{\prime}}\left[\ell\left(W, Z^{\prime}\right)\right]-\ell\left(W, S_{J i}^{c}\right)\right)\right), \quad Q=P_{W, S_{J}^{c} \mid S, J}, \quad P=P_{S_{J}^{c}} \otimes P_{W^{\prime} \mid S_{J}}
$$

\Longrightarrow Data-Dependent Prior of W
$\checkmark \mathcal{E} \precsim \mathbb{E} \sqrt{\frac{I^{S_{J}\left(W ; S_{J}^{c}\right)}}{n-m}} ;$ Individual Technique is a special case for $m=n \overline{1} 1$.

- Let \widetilde{Z} drawn i.i.d. from μ
- Let $U=\left(U_{1}, U_{2}, \ldots, U_{n}\right)^{T} \sim \operatorname{Unif}\left(\{0,1\}^{n}\right)$.
- Learning algorithm $\mathcal{A}: \mathcal{Z}^{n} \rightarrow \mathcal{W}$
- $\mathcal{E}=$
$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, U_{i}, \widetilde{Z}}\left[(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i, 1}\right)-\ell\left(W, \widetilde{Z}_{i, 0}\right)\right)\right]$
Lemma 4 (Steinke and Zakynthinou [2020])
Assume the loss is bounded between $[0,1]$, we have $|\mathcal{E}| \leq \sqrt{\frac{2 I(W ; U \mid \widetilde{Z})}{n}}$.
- Step 1: Finding the target.

$$
\mathcal{E}=\mathbb{E}_{W, U, \widetilde{Z}}\left[\frac{1}{n} \sum_{i=1}^{n}(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i}^{-}\right)-\ell\left(W, \widetilde{Z}_{i}^{+}\right)\right)\right]
$$

- Step 2: Selecting f, Q and P.

$$
f=t \cdot \frac{1}{n} \sum_{i=1}^{n}(-1)^{U_{i}}\left(\ell\left(W, \widetilde{z}_{i}^{-}\right)-\ell\left(W, \widetilde{z}_{i}^{+}\right)\right), \quad Q=P_{W, U \mid \tilde{z}}, \quad P=P_{U^{\prime}} \otimes P_{W \mid \tilde{z}}
$$

- Step 3: Bounding the CGF.
$(-1)^{U_{i}}\left(\ell\left(w, \widetilde{z}_{i}^{-}\right)-\ell\left(w, \widetilde{z}_{i}^{+}\right)\right)$is $\left|\ell\left(w, \widetilde{z}_{i}^{-}\right)-\ell\left(w, \widetilde{z}_{i}^{+}\right)\right|^{2}$-subGaussian:
$\log \mathbb{E}_{W \mid \widetilde{z}}\left[\mathbb{E}_{U^{\prime}}\left[e^{t \frac{1}{n} \sum_{i=1}^{n}(-1)^{U_{i}}\left(\ell\left(W, \tilde{z}_{i}^{-}\right)-\ell\left(W, \widetilde{z}_{i}^{+}\right)\right)}\right]\right] \leq \frac{t^{2}}{2 n}$
- Step 4: Optimizing the bound.

$$
\mathcal{E} \preceq \sqrt{\frac{I(W ; U \mid \widetilde{Z})}{n}} \leq \sqrt{\frac{I(W ; S)}{n}} .
$$

- Random Subset CMI: Haghifam, M. et al. Sharpened generalization bounds based on conditional mutual information and an application to noisy, iterative algorithms. NeurIPS 2020.
- Individual CMI: Rodríguez-Gálvez, B. et al. On random subset generalization error bounds and the stochastic gradient Langevin dynamics algorithm. ITW 2020. Zhou R, et al. Individually conditional individual mutual information bound on generalization error. TIT 2022.
- Stochastic Chaining IOMI/CMI: Zhou R, et al. Stochastic Chaining and Strengthened Information-Theoretic Generalization Bounds ISIT 2022.
- Leave-One-Out CMI: Haghifam, M. et al. Understanding Generalization via Leave-One-Out Conditional Mutual Information. ISIT 2022. Rammal, M. R. et al. On leave-one-out conditional mutual information for generalization. NeurIPS 2022.

Information-Theoretic Generalization Bounds for Black-Box Algorithms

- Wang, Z., and Mao, Y.. Tighter Information-Theoretic Generalization Bounds from Supersamples. ICML 2023.
- Main Contribution: New Conditional Mutual Information (CMI) bounds which are either theoretically or empirically tighter than previous CMI bounds for the same supersample setting.
- $F_{i}^{+}:=f_{W}\left(\widetilde{X}_{i}^{+}\right), F_{i}^{-}:=f_{W}\left(\widetilde{X}_{i}^{-}\right)$,
$F_{i}:=\left(F_{i}^{+}, F_{i}^{-}\right)$
\Rightarrow f-CMI Bound: $|\mathcal{E}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{I\left(F_{i} ; U_{i} \mid \widetilde{Z}\right)}$
[Harutyunyan et al., 2021]
- $L_{i}^{+}:=\ell\left(W, \widetilde{Z}_{i}^{+}\right), L_{i}^{-}:=\ell\left(W, \widetilde{Z}_{i}^{-}\right)$,
$L_{i}:=\left(L_{i}^{+}, L_{i}^{-}\right)$
\Rightarrow e-CMI Bound: $|\mathcal{E}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{I\left(L_{i} ; U_{i} \mid \widetilde{Z}\right)}$ [Hellström and Durisi, 2022]
- This paper: $\Delta L_{i}:=L_{i}^{-}-L_{i}^{+}$
\Rightarrow ld-CMI: $I\left(\Delta L_{i} ; U_{i} \mid \widetilde{Z}\right)$

Revist CMI Proof

- Step 1: Finding the target.

$$
\begin{aligned}
\mathcal{E} & =\mathbb{E}_{W, U, \widetilde{Z}}\left[\frac{1}{n} \sum_{i=1}^{n}(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i}^{-}\right)-\ell\left(W, \widetilde{Z}_{i}^{+}\right)\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\Delta L_{i}, U_{i}, \widetilde{Z}}\left[(-1)^{U_{i}} \Delta L_{i}\right]
\end{aligned}
$$

- Step 2: Selecting f, Q and P.

$$
\begin{aligned}
f= & t \cdot \frac{1}{n} \sum_{i=1}^{n}(-1)^{U_{i}}\left(\ell\left(W, \widetilde{z}_{i}^{-}\right)-\ell\left(W, \widetilde{z}_{i}^{+}\right)\right) \\
& =(-1)^{U_{i}} \Delta L_{i} \\
Q= & P_{W, U \mid \tilde{z}}=P_{\Delta L_{i}, U_{i} \mid \tilde{z}} \text { or } P_{\Delta L_{i}, U_{i}} \\
P= & P_{U^{\prime}} \otimes P_{W \mid \tilde{z}}=P_{U^{\prime}} \otimes P_{\Delta L_{i} \mid \tilde{z}} \text { or } P_{U^{\prime}} \otimes P_{\Delta L_{i}}
\end{aligned}
$$

$\begin{gathered} \widetilde{Z}_{1}^{+} \\ \widetilde{Z}_{2}^{+} \\ \vdots \\ \widetilde{Z}_{n}^{+} \end{gathered}$	$\begin{gathered} \widetilde{Z}_{1}^{-} \\ \widetilde{Z}_{2}^{-} \\ \vdots \\ \widetilde{Z}_{n}^{-} \end{gathered}$	$\stackrel{f_{W}}{ }$	$\begin{gathered} f_{W}\left(\tilde{X}_{1}^{+}\right) \\ f_{W}\left(\widetilde{X}_{2}^{+}\right) \\ \vdots \\ f_{W}\left(\widetilde{X}_{n}^{+}\right) \end{gathered}$	$\begin{gathered} f_{W}\left(\tilde{X}_{1}^{-}\right) \\ f_{W}\left(\widetilde{X}_{2}^{-}\right) \\ \vdots \\ f_{W}\left(\widetilde{X}_{n}^{-}\right) \end{gathered}$	$\stackrel{\ell}{¢}$	$\begin{gathered} \ell\left(W, \widetilde{Z}_{1}^{+}\right) \\ \ell\left(W, \widetilde{Z}_{2}^{+}\right) \\ \vdots \\ \ell\left(W, \widetilde{Z}_{n}^{+}\right) \end{gathered}$	$\begin{gathered} \ell\left(W, \widetilde{Z}_{1}^{-}\right) \\ \ell\left(W, \widetilde{Z}_{2}^{-}\right) \\ \vdots \\ \ell\left(W, \widetilde{Z}_{n}^{-}\right) \end{gathered}$	$\stackrel{ }{\triangle}$	$\begin{gathered} \Delta L_{1} \\ \Delta L_{2} \\ \vdots \\ \Delta L_{n} \end{gathered}$

$$
\underbrace{I\left(U_{i} ; U_{i} \mid \widetilde{Z}\right)}_{\text {CMI }} \geq \underbrace{I\left(f_{W}\left(\widetilde{Z}_{i}\right) ; U_{i} \mid \widetilde{Z}\right)}_{f \text {-CMI [Harutyunyan et al., 2021] }} \geq \underbrace{I\left(L_{i} ; U_{i} \mid \widetilde{Z}\right)}_{\text {e-CMI Hellström and Durisi, 2022] }} \geq \underbrace{I\left(\Delta L_{i} ; U_{i} \mid \widetilde{Z}\right)}_{\text {d-CMI (Ours) }}
$$

Theorem 1

Assume the loss is bounded between $[0,1]$, we have

$$
\begin{align*}
& |\mathcal{E}| \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\widetilde{Z}} \sqrt{2 I^{\tilde{Z}}\left(\Delta L_{i} ; U_{i}\right)} \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 I\left(\Delta L_{i} ; U_{i} \mid \widetilde{Z}\right)}, \tag{2}\\
& |\mathcal{E}| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 I\left(\Delta L_{i} ; U_{i}\right)} . \tag{3}
\end{align*}
$$

Theorem 1

Assume the loss is bounded between $[0,1]$, we have

$$
\begin{align*}
|\mathcal{E}| & \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\widetilde{Z}} \sqrt{2 I^{\tilde{Z}}\left(\Delta L_{i} ; U_{i}\right)} \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 I\left(\Delta L_{i} ; U_{i} \mid \widetilde{Z}\right)}, \tag{2}\\
|\mathcal{E}| & \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2 I\left(\Delta L_{i} ; U_{i}\right)} . \tag{3}
\end{align*}
$$

Estimating $I\left(W ; U_{i} \mid \widetilde{Z}_{i}\right)$ vs $I\left(\Delta L_{i} ; U_{i}\right)$:

- W is a high-dimensional R.V.
$-\Delta L_{i}$ is an one-dimensional R.V. \Longrightarrow Easy-to-Compute!

Channel from U_{i} to ΔL_{i}. Zero-one loss assumed.

Theorem 2

Under zero-one loss and for any interpolating algorithm $\mathcal{A}, I\left(\Delta L_{i} ; U_{i}\right)=\left(1-\alpha_{i}\right) \ln 2$ nats for each i, and $|\mathcal{E}|=L_{\mu}=\sum_{i=1}^{n} \frac{I\left(\Delta L_{i} ; U_{i}\right)}{n \ln 2}$.
\Longrightarrow Generalization error is exactly determined by the communication rate over the channel in the figure averaged over all such channels.

Key observation:
$\mathcal{E}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, U_{i}, \tilde{Z}}\left[(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)\right]=\frac{2}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \varepsilon_{i}}\left[\varepsilon_{i} L_{i}^{+}\right]$,
where $\varepsilon_{i}=(-1)^{\bar{U}_{i}}$ is the Rademacher variable.

Key observation:
$\mathcal{E}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{W, U_{i}, \widetilde{Z}}\left[(-1)^{U_{i}}\left(\ell\left(W, \widetilde{Z}_{i}^{+}\right)-\ell\left(W, \widetilde{Z}_{i}^{-}\right)\right)\right]=\frac{2}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \varepsilon_{i}}\left[\varepsilon_{i} L_{i}^{+}\right]$,
where $\varepsilon_{i}=(-1)^{\bar{U}_{i}}$ is the Rademacher variable.

Lemma 5

Consider the weighted generalization error, $\mathcal{E}_{C_{1}} \triangleq L_{\mu}-\left(1+C_{1}\right) L_{n}$. We have

$$
\mathcal{E}_{C_{1}}=\frac{2+C_{1}}{n} \sum_{i=1}^{n} \mathbb{E}_{L_{i}^{+}, \tilde{\varepsilon}_{i}}\left[\tilde{\varepsilon}_{i} L_{i}^{+}\right]
$$

where $\tilde{\varepsilon}_{i}=(-1)^{\bar{U}_{i}}-\frac{C_{1}}{C_{1}+2}$ is a shifted Rademacher variable with mean $-\frac{C_{1}}{C_{1}+2}$.

Theorem 3

Let $\ell(\cdot, \cdot) \in[0,1]$. There exist $C_{1}, C_{2}>0$ such that

$$
\begin{align*}
& L_{\mu} \leq\left(1+C_{1}\right) L_{n}+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} \tag{4}\\
& L_{\mu} \leq L_{n}+\sum_{i=1}^{n} \frac{4 I\left(L_{i}^{+} ; U_{i}\right)}{n}+4 \sqrt{\sum_{i=1}^{n} \frac{L_{n} I\left(L_{i}^{+} ; U_{i}\right)}{n}} \tag{5}
\end{align*}
$$

Theorem 3

Let $\ell(\cdot, \cdot) \in[0,1]$. There exist $C_{1}, C_{2}>0$ such that

$$
\begin{align*}
& L_{\mu} \leq\left(1+C_{1}\right) L_{n}+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} \tag{4}\\
& L_{\mu} \leq L_{n}+\sum_{i=1}^{n} \frac{4 I\left(L_{i}^{+} ; U_{i}\right)}{n}+4 \sqrt{\sum_{i=1}^{n} \frac{L_{n} I\left(L_{i}^{+} ; U_{i}\right)}{n}} . \tag{5}
\end{align*}
$$

If $L_{n} \rightarrow 0$, then (3)(4) vanish with a faster rate.

Theorem 4

For any $\lambda \in(0,1)$, the " λ-sharpness" at position i of the training set is defined as

$$
F_{i}(\lambda) \triangleq \mathbb{E}_{W, Z_{i}}\left[\ell\left(W, Z_{i}\right)-(1+\lambda) \mathbb{E}_{W \mid Z_{i}} \ell\left(W, Z_{i}\right)\right]^{2}
$$

Let $F(\lambda)=\frac{1}{n} \sum_{i=1}^{n} F_{i}(\lambda)$. Assume $\ell(\cdot, \cdot) \in\{0,1\}, \lambda \in(0,1)$. Then, there exist $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\mathcal{E} \leq C_{1} F(\lambda)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} . \tag{6}
\end{equation*}
$$

Sharpness Based MI Bound

Theorem 4

For any $\lambda \in(0,1)$, the " λ-sharpness" at position i of the training set is defined as

$$
F_{i}(\lambda) \triangleq \mathbb{E}_{W, Z_{i}}\left[\ell\left(W, Z_{i}\right)-(1+\lambda) \mathbb{E}_{W \mid Z_{i}} \ell\left(W, Z_{i}\right)\right]^{2}
$$

Let $F(\lambda)=\frac{1}{n} \sum_{i=1}^{n} F_{i}(\lambda)$. Assume $\ell(\cdot, \cdot) \in\{0,1\}, \lambda \in(0,1)$. Then, there exist $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\mathcal{E} \leq C_{1} F(\lambda)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} . \tag{6}
\end{equation*}
$$

- $L_{n}=0 \rightarrow F(\lambda)=0$, but $L_{n}=0 \nleftarrow F(\lambda)=0$;
- For any fixed C_{1} and C_{2}, Eq. (6) is tighter than Eq. (4).

Uncondi.: $\frac{1}{n} \sum_{i=1}^{n} \sqrt{2 I\left(\Delta L_{i} ; U_{i}\right)} ; \quad$ Binary KL: Hellström and Durisi [2022]; Weighted:

$$
\sum_{i=1}^{n} \frac{4 I\left(L_{i}^{+} ; U_{i}\right)}{n}+4 \sqrt{\sum_{i=1}^{n} \frac{L_{n} I\left(L_{i}^{+} ; U_{i}\right)}{n}} ; \quad \text { Sharpness: } C_{1} F(\lambda)+\sum_{i=1}^{n} \frac{I\left(L_{i}^{+} ; U_{i}\right)}{C_{2} n} .
$$

Information-Theoretic Bounds in Stochastic Convex Optimization

Limitations in SCO

Limitations of Information-Theoretic (IT) bounds:

- Original input-output mutual information (IOMI) (e.g., $I(W ; S)[\mathrm{Xu}$ and Raginsky, 2017]) based bound can $\rightarrow \infty$
\Longrightarrow solved by conditional mutual information (CMI) $I(W ; U \mid \widetilde{Z})$ [Steinke and Zakynthinou, 2020]
- Slow convergence rate, e.g., $\mathcal{O}(1 / \sqrt{n})$ \Longrightarrow mitigated by [Haghifam et al., 2021, Hellström and Durisi, 2021, 2022, Wang and Mao, 2023, Wu et al., 2023, Zhou et al., 2023]

Limitations in SCO

Limitations of Information-Theoretic (IT) bounds:

- Original input-output mutual information (IOMI) (e.g., $I(W ; S)[\mathrm{Xu}$ and Raginsky, 2017]) based bound can $\rightarrow \infty$
\Longrightarrow solved by conditional mutual information (CMI) $I(W ; U \mid \widetilde{Z})$ [Steinke and Zakynthinou, 2020]
- Slow convergence rate, e.g., $\mathcal{O}(1 / \sqrt{n})$ \Longrightarrow mitigated by [Haghifam et al., 2021, Hellström and Durisi, 2021, 2022, Wang and Mao, 2023, Wu et al., 2023, Zhou et al., 2023]
- Non-vanishing in Stochastic Convex Optimization (SCO) problems for (nearly) all previous IT bounds![Haghifam et al., 2023]

Limitations in SCO

Limitations of Information-Theoretic (IT) bounds:

- Original input-output mutual information (IOMI) (e.g., $I(W ; S)[\mathrm{Xu}$ and Raginsky, 2017]) based bound can $\rightarrow \infty$
\Longrightarrow solved by conditional mutual information (CMI) $I(W ; U \mid \widetilde{Z})$ [Steinke and Zakynthinou, 2020]
- Slow convergence rate, e.g., $\mathcal{O}(1 / \sqrt{n})$ \Longrightarrow mitigated by [Haghifam et al., 2021, Hellström and Durisi, 2021, 2022, Wang and Mao, 2023, Wu et al., 2023, Zhou et al., 2023]
- Non-vanishing in Stochastic Convex Optimization (SCO) problems for (nearly) all previous IT bounds![Haghifam et al., 2023] Wang, Z. and Mao, Y.. Sample-Conditioned Hypothesis Stability Sharpens Information-Theoretic Generalization Bounds. NeurIPS 2023. Our contribution: Incorporating stability-based analysis into IT framework which improves both stability-based bounds and IT bounds.
- Z is one-hot vector in \mathbb{R}^{d}
- Loss: $-\langle w, z\rangle$; ERM solution $W=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$
- Birthday Paradox Problem: For a large d, the probability that no pair of instances in \widetilde{Z} sharing the same non-zero coordinate (referred to as event E_{0}) is smaller than a constant probability (independent of n).
- If $d \geq \frac{2 n-1}{1-c^{1 /(2 n-1)}}$, then $P\left(E_{0}\right) \geq c \geq\left(1-\frac{2 n-1}{d}\right)^{2 n-1}$, e.g., $d=2 n^{2} \Longrightarrow c \geq 0.1$.
- Let $d=2 n^{2}, I\left(W ; U_{i} \mid \widetilde{Z}_{i}\right)=\log 2-H\left(U_{i} \mid W, \widetilde{Z}_{i}\right) \geq 0.1 \cdot \log 2$.
- CMI bound is non-vanishing but $\mathcal{E} \leq \mathcal{O}(1 / \sqrt{n})$.

$$
\begin{array}{l|l|ll|l|ll}
Z_{1}, \ldots, & Z_{i}, & \ldots, Z_{n} & \xrightarrow{\mathcal{A}} & W & \Rightarrow & \ell(W, Z) \\
Z_{1}, \ldots, & Z_{i}^{\prime}, & \ldots, Z_{n} & \xrightarrow{\mathcal{A}} & W^{-i} & \Rightarrow & \ell\left(W^{-i}, Z\right)
\end{array}
$$

\mathcal{A} is Stable \Longleftrightarrow Loss of $\left(W^{-i}, Z\right)$ is close to Loss of (W, Z).

- Uniform Stability [Bousquet and Elisseeff, 2002]: $\sup _{W, W^{-i}, Z}\left|\ell(W, Z)-\ell\left(W^{-i}, Z\right)\right| \leq$ Unif. Stability Param.
- Sample-Conditioned Hypothesis (SCH) Stability in our paper $\mathbb{E}_{W, W^{-i}}\left[\sup _{Z}\left|\ell(W, Z)-\ell\left(W^{-i}, Z\right)\right|\right] \leq$ SCH Stability Param., where Z can be either Z_{i} or Z_{i}^{\prime}.

By DV lemma: $\mathcal{E} \leq \inf _{\mathrm{t}>0} \frac{\text { IOMI or CMI+CGF }}{\mathrm{t}}$.
where

$$
\mathrm{CGF}=\log \mathbb{E}\left[\exp \left(t \cdot f_{\mathrm{DV}}\right)\right]
$$

By DV lemma: $\mathcal{E} \leq \inf _{\mathrm{t}>0} \frac{\text { IOMI or CMI }+\mathrm{CGF}}{\mathrm{t}}$.
where

$$
\mathrm{CGF}=\log \mathbb{E}\left[\exp \left(t \cdot f_{\mathrm{DV}}\right)\right]
$$

- Previous works:
$f_{\mathrm{DV}}=\ell\left(W, Z^{\prime}\right)$ e.g., [Bu et al., 2019]
$f_{\mathrm{DV}}=\ell\left(W, Z^{\prime}\right)-\mathbb{E}_{Z^{\prime}}\left[\ell\left(W, Z^{\prime}\right)\right]$ e.g., [Wu et al., 2023]
$f_{\mathrm{DV}}=(-1)^{U}\left(\ell\left(W, Z_{1}\right)-\ell\left(W, Z_{2}\right)\right)$ e.g., [Steinke and Zakynthinou, 2020]

By DV lemma: $\mathcal{E} \leq \inf _{\mathrm{t}>0} \frac{\text { IOMI or CMI }+\mathrm{CGF}}{\mathrm{t}}$.
where

$$
\mathrm{CGF}=\log \mathbb{E}\left[\exp \left(t \cdot f_{\mathrm{DV}}\right)\right] .
$$

- Previous works:
$f_{\mathrm{DV}}=\ell\left(W, Z^{\prime}\right)$ e.g., [Bu et al., 2019]
$f_{\mathrm{DV}}=\ell\left(W, Z^{\prime}\right)-\mathbb{E}_{Z^{\prime}}\left[\ell\left(W, Z^{\prime}\right)\right]$ e.g., [Wu et al., 2023]
$f_{\mathrm{DV}}=(-1)^{U}\left(\ell\left(W, Z_{1}\right)-\ell\left(W, Z_{2}\right)\right)$ e.g., [Steinke and Zakynthinou, 2020]
- This paper: let W^{-i} be obtained by replacing one data in S, $f_{\mathrm{DV}}=\ell\left(W, Z^{\prime}\right)-\mathbb{E}_{W^{-i} \mid W}\left[\ell\left(W^{-i}, Z^{\prime}\right)\right] \Longrightarrow$ IOMI $f_{\mathrm{DV}}=(-1)^{U}\left(\ell(W, Z)-\ell\left(W^{-i}, Z\right)\right) \Longrightarrow$ New CMI

The generalization game:

Given \begin{tabular}{|c|c|}
\hlineW \& W^{-1}

W \& W^{-2}

\vdots \& \vdots

W \& W^{-n}

\hline

 and

$\widetilde{Z}_{1,0}$ \& \square

$\widetilde{Z}_{2,1}$

\vdots

$\widetilde{Z}_{n, 0}$

\square \& \square

\vdots \& \vdots

\square \& \square

\hline
\end{tabular}

Theorem 5 (Informal.)

If \mathcal{A} is β-stable, we have $\mathcal{E} \precsim \beta \sqrt{I\left(Z_{U} ; U \mid W, W^{-i}\right)} \leq \beta \sqrt{I\left(W ; Z_{i}\right)}$

Revisit SCO Example

In SCO counterexamples given by Haghifam et al. [2023]:

$$
\mathcal{E} \leq \mathcal{O}(1 / \sqrt{n})
$$

- Previous IOMI or CMI bound in these examples: SubGaussian param. $R=\mathcal{O}(1)$ (=Lip. Para. \times Diam. of hypo. space) and $\mathrm{IOMI} \geq \mathrm{CMI}=\mathcal{O}(1)$.
\Longrightarrow IOMI bound \geq CMI bound $\in \mathcal{O}(1) \Longrightarrow$ fail to explain the learnability.
- New CMI bound in these examples:
$\beta=\mathcal{O}(1 / \sqrt{n})$
and New $\mathrm{CMI}=\mathcal{O}(1)$.
\Longrightarrow New CMI bound $\in \mathcal{O}(1 / \sqrt{n}) \Longrightarrow$ can explain the learnability.
- More bounds, e.g., fast-rate bounds and second-moment bounds.
- More examples, e.g., our bounds can also improve stability-based bounds.

CMI on Distribution-free Setting

CMI and VC-dim:

Theorem 6

Let $\mathcal{Z}=\mathcal{X} \times\{0,1\}$, and let $\mathcal{F}=\left\{f_{w}: \mathcal{X} \rightarrow\{0,1\} \mid w \in \mathcal{W}\right\}$ be a functional hypothesis class with finite $V C$ dimension d. Let $n>d+1$, for any algorithm \mathcal{A},

$$
\frac{1}{n} \sum_{i=1}^{n} \sqrt{I\left(F_{i}^{+}, F_{i}^{-} ; U_{i} \mid \widetilde{Z}_{i}\right)} \leq \mathcal{O}\left(\sqrt{\frac{d}{n} \log \left(\frac{n}{d}\right)}\right)
$$

Proof Sketch.
For a given \widetilde{Z}, the number of distinct values of their predictions, denoted by k, by Sauer-Shelah lemma for $n>d+1, k \leq \sum_{i=1}^{d}\binom{n}{i} \leq\left(\frac{e n}{d}\right)^{d}$.

$$
I\left(F^{+}, F^{-} ; U \mid \widetilde{Z}\right) \leq H\left(F^{+}, F^{-} \mid \widetilde{Z}\right) \leq H\left(F^{+} \mid \widetilde{Z}\right)+H\left(F^{-} \mid \widetilde{Z}\right) \leq 2 d \log \left(\frac{e n}{d}\right)
$$

CMI on Distribution-free Setting (Other Related Works)

- Steinke, T., and Zakynthinou, L.. Open problem: Information complexity of vc learning. COLT 2020.
- Hafez-Kolahi, H. et al. Conditioning and processing: Techniques to improve information-theoretic generalization bounds. NeurIPS 2020.
- Haghifam, M. et al. Towards a unified information-theoretic framework for generalization. NeurIPS 2021.
- LOO CMI: Haghifam, M. et al. Understanding Generalization via Leave-One-Out Conditional Mutual Information. ISIT 2022.
- f-CMI and e-CMI: Harutyunyan, H. et al. Information-theoretic generalization bounds for black-box learning algorithms. NeurIPS 2021.

Hellström, F. and Durisi, G.. A new family of generalization bounds using samplewise evaluated CMI. NeurIPS 2022.

- Bassily, R. et al. Learners that use little information. ALT 2018.
- Livni, R.. Information Theoretic Lower Bounds for Information Theoretic Upper

Information-Theoretic Generalization Bounds for SGD

Lemma 6 (Xu and Raginsky [2017])

Assume the loss $\ell(w, Z)$ is R-subgaussian ${ }^{2}$ for any $w \in \mathcal{W}$. The generalization error of \mathcal{A} is bounded by

$$
|\mathcal{E}| \leq \sqrt{\frac{2 R^{2}}{n} I(W ; S)}
$$

Mutual information $I(W ; S) \triangleq \mathrm{D}_{\mathrm{KL}}\left(P_{W, S} \| P_{W} \otimes P_{S}\right)$.
\Longrightarrow Distribution-dependent and Algorithm-dependent

[^1]SGLD updates:

$$
W_{t} \triangleq W_{t-1}-\lambda_{t} g\left(W_{t-1}, B_{t}\right)+N_{t}
$$

where

$$
g\left(w, B_{t}\right) \triangleq \frac{1}{b} \sum_{z \in B_{t}} \nabla_{w} \ell(w, z)
$$

- λ_{t} : learning rate
- b: batch size
- B_{t} denotes the batch used for the $t^{\text {th }}$ update
- $N_{t} \sim \mathcal{N}\left(0, \sigma_{t}^{2} \mathbf{I}_{d}\right)$

Assume SGLD outputs W_{T} as the learned model parameter.

$$
\begin{align*}
& I\left(W_{T} ; S\right)= I\left(W_{T-1}-\lambda_{T} g\left(W_{T-1}, B_{T}\right)+N_{T} ; S\right) \\
& \leq I\left(W_{T-1},-\lambda_{T} g\left(W_{T-1}, B_{T}\right)+N_{T} ; S\right) \tag{7}\\
&= I\left(W_{T-1} ; S\right)+I\left(-\lambda_{T} g\left(W_{T-1}, B_{T}\right)+N_{T} ; S \mid W_{T-1}\right) \tag{8}\\
& \vdots \\
& \leq \sum_{t=1}^{T} I\left(-\lambda_{t} g\left(W_{t-1}, B_{t}\right)+N_{t} ; S \mid W_{t-1}\right) \\
& I\left(-\lambda_{t} g\left(W_{t-1}, B_{t}\right)+N_{t} ; S \mid W_{t-1}\right) \\
&=\mathbb{E}_{S, W_{t-1}}\left[\mathrm { D } _ { \mathrm { KL } } \left(Q_{-\lambda_{t} g\left(W_{t-1}, B_{t}\right)+N_{t} \mid S, W_{t-1} \| P_{\left.\left.-\lambda_{t} g\left(W_{t-1}, B_{t}^{\prime}\right)+N_{t} \mid W_{t-1}\right)\right]}}^{\leq \frac{d}{2} \mathbb{E}_{W_{t-1}} \log \left(\frac{\lambda_{t}^{2} \mathbb{E}_{S}^{W_{t-1}} \| g-\left.\mathbb{E}[g]\right|_{2} ^{2}}{d \sigma_{t}^{2}}+1\right) .}\right.\right.
\end{align*}
$$

Theorem 7

Gen. err. of SGLD is upper bounded by

$$
\mathcal{E} \precsim \sqrt{\frac{d}{n} \sum_{t=1}^{T} \mathbb{E} \log \left(\frac{\lambda_{t}^{2} \mathbb{E}\|g-\mathbb{E}[g]\|_{2}^{2}}{d \sigma_{t}^{2}}+1\right)} .
$$

Other Works on SGLD

- Bu, Y. et al. Tightening Mutual Information Based Bounds on Generalization Error. ISIT 2019.
Negrea, J. et al. Information-theoretic generalization bounds for SGLD via data-dependent estimates. NeurIPS 2019.
Haghifam, M. et al. Sharpened generalization bounds based on conditional mutual information and an application to noisy, iterative algorithms. NeurIPS 2020. Rodríguez-Gálvez, B. et al. On random subset generalization error bounds and the stochastic gradient Langevin dynamics algorithm. ITW 2020.
- Wang, Hao et al. Analyzing the generalization capability of sgld using properties of gaussian channels. NeurIPS 2021.
- Li, J. et al. On generalization error bounds of noisy gradient methods for non-convex learning. ICLR 2020.
- Mou, W.. Generalization bounds of sgld for non-convex learning: Two theoretical viewpoints. COLT 2018.
- Banerjee, A. et al. Stability based generalization bounds for exponential family langevin dynamics. ICML 2022.
- Futami, F., and Fujisawa, M.. Time-Independent Information-Theoretic Generalization Bounds for SGLD. NeurIPS 2023.

SGD updates:

$$
W_{t} \triangleq W_{t-1}-\lambda_{t} g\left(W_{t-1}, B_{t}\right)
$$

where

$$
g\left(w, B_{t}\right) \triangleq \frac{1}{b} \sum_{z \in B_{t}} \nabla_{w} \ell(w, z)
$$

- λ_{t} : learning rate
- b: batch size
- B_{t} denotes the batch used for the $t^{\text {th }}$ update.

Assume SGD outputs W_{T} as the learned model parameter.

SGD updates:

$$
W_{t} \triangleq W_{t-1}-\lambda_{t} g\left(W_{t-1}, B_{t}\right)
$$

where

$$
g\left(w, B_{t}\right) \triangleq \frac{1}{b} \sum_{z \in B_{t}} \nabla_{w} \ell(w, z)
$$

- λ_{t} : learning rate
- b : batch size
- B_{t} denotes the batch used for the $t^{\text {th }}$ update.

Assume SGD outputs W_{T} as the learned model parameter.
Difficulty of using MI based bound: $I\left(W_{T} ; S\right) \rightarrow$ too large for SGD

Follow up the work of Neu et al．［2021］，let $\left\{\sigma_{t}\right\}_{t=1}^{T}$ be a sequence of positive real numbers．

Define $\widetilde{W}_{0} \triangleq W_{0}, \quad$ and $\quad \widetilde{W}_{t} \triangleq \widetilde{W}_{t-1}-\lambda_{t} g\left(W_{t-1}, B_{t}\right)+N_{t}$ ，for $t>0$ ，where $N_{t} \sim \mathcal{N}\left(0, \sigma_{t}^{2} \mathbf{I}_{d}\right)$ is a Gaussian noise．

$$
\begin{array}{ccccccccccc}
& & N_{1} & & N_{2} & & \cdots & & N_{T-1} & & N_{T} \\
& & \stackrel{\downarrow}{1} & & \stackrel{\downarrow}{W_{2}} & & & & \widetilde{W}^{\downarrow} & & \downarrow \\
\widetilde{W}_{0} & \rightarrow & \widetilde{W}_{1} & \rightarrow & \cdots & \rightarrow & \widetilde{W}_{T-1} & \rightarrow & \widetilde{W}_{T} \\
\| & \nearrow & & \nearrow & & \nearrow & & & & \nearrow & \\
W_{0} & \rightarrow & W_{1} & \rightarrow & W_{2} & \rightarrow & \cdots & \rightarrow & W_{T-1} & \rightarrow & W_{T}
\end{array}
$$

Let $\Delta_{t}=\sum_{\tau=1}^{t} N_{\tau}$ ．Notice that $\widetilde{W}_{t}=W_{t}+\Delta_{t}$ ．

Bounding by Auxiliary Weights

Denote this auxiliary weight process by $\mathcal{A}_{A W P}$. Let $\mathcal{A}_{S G D}$ be the original algorithm of SGD,

$$
\begin{align*}
\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right) & =\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right)+\mathcal{E}_{\mu}\left(\mathcal{A}_{A W P}\right)-\mathcal{E}_{\mu}\left(\mathcal{A}_{A W P}\right) \\
& \leq \underbrace{\mathcal{O}\left(\sqrt{\frac{I\left(\widetilde{W}_{T} ; S\right)}{n}}\right)}_{\text {Lemma } 3}+\underbrace{\left|\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right)-\mathcal{E}_{\mu}\left(\mathcal{A}_{A W P}\right)\right|}_{\text {residual term }} \tag{9}
\end{align*}
$$

\precsim Trajectories of Gradient Variance/Dispersion + Sharpness.

Main Result

Theorem 8 (Wang and Mao [2022])

The generalization error of SGD is upper bounded by

$$
\begin{equation*}
\mathcal{E} \precsim \sqrt[3]{\sum_{t=1}^{T} \frac{\mathbb{E}\left[\mathbb{V}_{t}\left(W_{t-1}\right)\right] \mathbb{E}\left[\operatorname{Tr}\left(\mathrm{H}_{W_{T}}(Z)\right)\right]}{n}} \tag{10}
\end{equation*}
$$

- Gradient Dispersion: $\mathbb{V}_{t}(w) \triangleq \mathbb{E}_{S}\left[\left\|g\left(w, B_{t}\right)-\mathbb{E}_{W, Z}\left[\nabla_{w} \ell(W, Z)\right]\right\|_{2}^{2}\right]$

SDE updates: $W_{t} \triangleq W_{t-1}-\eta g\left(W_{t-1}, S\right)+\eta C_{t}^{1 / 2} N_{t}$, where

$$
C_{t} \triangleq \frac{n-b}{b(n-1)}\left(\frac{1}{n} \sum_{i=1}^{n} \nabla \ell_{i} \nabla \ell_{i}^{\mathrm{T}}-G_{t} G_{t}^{\mathrm{T}}\right)
$$

is the gradient noise covariance matrix.
Denote SDE approximation as $\mathcal{A}_{S D E}$,

$$
\begin{align*}
\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right) & =\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right)+\mathcal{E}_{\mu}\left(\mathcal{A}_{S D E}\right)-\mathcal{E}_{\mu}\left(\mathcal{A}_{S D E}\right) \\
& \leq \underbrace{\mathcal{O}\left(\sqrt{\frac{I\left(W_{\mathrm{SDE}} ; S\right)}{n}}\right)}_{\text {Lemma } 3}+\underbrace{\left|\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right)-\mathcal{E}_{\mu}\left(\mathcal{A}_{S D E}\right)\right|}_{\text {residual term }}, \tag{11}
\end{align*}
$$

where $W_{\text {SDE }}$ is the output hypothesis by $\mathcal{A}_{\text {SDE }}$.

$$
\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right) \leq \underbrace{\mathcal{O}\left(\sqrt{\frac{I\left(W_{\mathrm{SDE}} ; S\right)}{n}}\right)}_{\text {Lemma } 3}+\underbrace{\left|\mathcal{E}_{\mu}\left(\mathcal{A}_{S G D}\right)-\mathcal{E}_{\mu}\left(\mathcal{A}_{S D E}\right)\right|}_{\text {residual term }}
$$

Empirical evidence from [Wu et al., 2020, Li et al., 2021] and suggests that the residual term is small.
\Longrightarrow It is safe to investigate the generalization of SGD using the IT bounds of SDE directly.

Information-Theoretic Analysis Beyond Supervised Learning

Applying IT Analysis to Unsupervised Domain Adaptation 60

Wang, Z. and Mao Y.. Information-theoretic analysis of unsupervised domain adaptation. ICLR 2023.

- Novel upper bounds for generalization error of UDA.
- Simple regularization technique for improving generalization of UDA

Additional Notations

- Source data $Z=(X, Y) \sim \mu$ and target data $Z^{\prime}=\left(X^{\prime}, Y^{\prime}\right) \sim \mu^{\prime}$
- Labeled source sample: $S=\left\{Z_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d }}{\sim} \mu^{\otimes n}$; Unlabelled target sample $S_{X^{\prime}}^{\prime}=\left\{X_{j}^{\prime}\right\}_{j=1}^{m} \stackrel{\text { i.i.d }}{\sim} P_{X^{\prime}}^{\otimes m}$
- Generalization error $=$ testing error of target domain - training error of source domain:

$$
\begin{aligned}
\mathcal{E} & \triangleq \mathbb{E}_{W, S, S_{X^{\prime}}^{\prime}}\left[R_{\mu^{\prime}}(W)-R_{S}(W)\right] \\
& =\mathbb{E}_{W, S, S_{X^{\prime}}^{\prime}}\left[L_{\mu^{\prime}}(W)-L_{\mu}(W)+L_{\mu}(W)-L_{S}(W)\right]
\end{aligned}
$$

Theorem 9

Assume $\ell\left(f_{w}\left(X^{\prime}\right), Y^{\prime}\right)$ is R-subgaussian. Then

$$
|\mathcal{E}| \leq \frac{1}{n m} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X_{j}^{\prime}} \sqrt{2 R^{2} I^{X_{j}^{\prime}}\left(W ; Z_{i}\right)}+\sqrt{2 R^{2} \mathrm{D}_{\mathrm{KL}}\left(\mu \| \mu^{\prime}\right)}
$$

Consider SGLD. At each time step t,

- labelled source mini-batch: $Z_{B_{t}}$; unlabelled target mini-batch: $X_{B_{t}}^{\prime}$
- gradient: $G_{t}=g\left(W_{t-1}, Z_{B_{t}}, X_{B_{t}}^{\prime}\right)$
- updating rule: $W_{t}=W_{t-1}-\eta_{t} G_{t}+N_{t}$ where $N_{t} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$.

Theorem 10

Under the assumption of Theorem 9. Let the total iteration number be T, then

$$
|\mathcal{E}| \leq \sqrt{\frac{R^{2}}{n} \sum_{t=1}^{T} \frac{\eta_{t}^{2}}{\sigma_{t}^{2}} \mathbb{E}_{S_{X^{\prime}}^{\prime}, W_{t-1}, S}\left[\left\|G_{t}-\mathbb{E}_{Z_{B_{t}}}\left[G_{t}\right]\right\|^{2}\right]}+\sqrt{2 R^{2} \mathrm{D}_{\mathrm{KL}}\left(\mu \| \mu^{\prime}\right)}
$$

restrict the gradient norm \Longrightarrow reduce $|\mathcal{E}|$.

Experimental Results: RotatedMNIST

RotatedMNIST is built based on the MNIST dataset and consists of six domains, which are rotated MNIST images with rotation angle $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 75°.

RotatedMNIST.

	RotatedMNIST $\left(\mathbf{0}^{\circ}\right.$ as source domain $)$					
Method	$\mathbf{1 5}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{7 5}^{\circ}$	Ave
ERM	97.5 ± 0.2	84.1 ± 0.8	53.9 ± 0.7	34.2 ± 0.4	22.3 ± 0.5	58.4
DANN	97.3 ± 0.4	90.6 ± 1.1	68.7 ± 4.2	30.8 ± 0.6	19.0 ± 0.6	61.3
MMD	97.5 ± 0.1	95.3 ± 0.4	73.6 ± 2.1	44.2 ± 1.8	32.1 ± 2.1	68.6
CORAL	97.1 ± 0.3	82.3 ± 0.3	56.0 ± 2.4	30.8 ± 0.2	27.1 ± 1.7	58.7
WD	96.7 ± 0.3	93.1 ± 1.2	64.1 ± 3.3	41.4 ± 7.6	27.6 ± 2.0	64.6
KL	97.8 ± 0.1	97.1 ± 0.2	93.4 ± 0.8	75.5 ± 2.4	68.1 ± 1.8	86.4
ERM-GP	97.5 ± 0.1	86.2 ± 0.5	62.0 ± 1.9	34.8 ± 2.1	26.1 ± 1.2	61.2
KL-GP	98.2 ± 0.2	96.9 ± 0.1	95.0 ± 0.6	$\mathbf{8 8 . 0} \pm \mathbf{8 . 1}$	$\mathbf{7 8 . 1} \pm \mathbf{2 . 5}$	$\mathbf{9 1 . 2}$

Other Works beyond Supervised Learning

- Semi-supervised learning: He, H. et al. Information-theoretic characterization of the generalization error for iterative semisupervised learning. JMLR 2022. Aminian, G. et al. An information-theoretical approach to semi-supervised learning under covariate-shift. AISTATS 2022.
- Transfer Learning: Wu, X. et al. Informationtheoretic analysis for transfer learning. ISIT 2020.
Bu, Y. et al. Characterizing and understanding the generalization error of transfer learning with gibbs algorithm. AISTATS 2022.
- Meta Learning: Jose, S. T. and Simeone, O. Information-theoretic generalization bounds for meta-learning and applications. Entropy 2021.
Chen, Q. et al. Generalization bounds for meta-learning: An information-theoretic analysis. NeurIPS 2021
Hellström, F. and Durisi, G. Evaluated CMI bounds for meta learning: Tightness and expressiveness. NeurIPS 2022.

Other Works beyond Supervised Learning (Cont.)

- Federated Learning: Yagli, S. et al. Information-theoretic bounds on the generalization error and privacy leakage in federated learning. SPAWC 2020.
- Transductive Learning: Tang, H. and Liu, Y. Information-Theoretic Generalization Bounds for Transductive Learning and its Applications. arXiv preprint arXiv:2311.04561, 2023.
- Quantum Learning: Caro, M. et al. Information-theoretic generalization bounds for learning from quantum data. arXiv preprint arXiv:2311.05529, 2023.

More Related Works (beyond DV Lemma)

- Wang, H. et al. An information-theoretic view of generalization via Wasserstein distance. ISIT 2019.
- Rodríguez-Gálvez, B. et al. Tighter expected generalization error bounds via Wasserstein distance. NeurIPS 2021.
- Lugosi, G., and Neu, G.. Generalization bounds via convex analysis. COLT 2022.
- Lugosi, G., and Neu, G.. Online-to-PAC Conversions: Generalization Bounds via Regret Analysis. arXiv preprint arXiv:2305.19674, 2023.
- Chu, Y., and Raginsky, M.. A unified framework for information-theoretic generalization bounds. NeurIPS 2023.

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learning algorithms. Advances in Neural Information Processing Systems, 2017.
Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mutual information. In Conference on Learning Theory. PMLR, 2020.

Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, and Aram Galstyan. Information-theoretic generalization bounds for black-box learning algorithms. In Advances in Neural Information Processing Systems, 2021.
Fredrik Hellström and Giuseppe Durisi. A new family of generalization bounds using samplewise evaluated CMI. In Advances in Neural Information Processing Systems, 2022.

Mahdi Haghifam, Gintare Karolina Dziugaite, Shay Moran, and Dan Roy. Towards a unified information-theoretic framework for generalization. Advances in Neural Information Processing Systems, 34:26370-26381, 2021.
Fredrik Hellström and Giuseppe Durisi. Fast-rate loss bounds via conditional information measures with applications to neural networks. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 952-957. IEEE, 2021.

Ziqiao Wang and Yongyi Mao. Tighter information-theoretic generalization bounds from supersamples. In International Conference on Machine Learning. PMLR, 2023.

Xuetong Wu, Jonathan H Manton, Uwe Aickelin, and Jingge Zhu. On the tightness of information-theoretic bounds on generalization error of learning algorithms. arXiv preprint arXiv:2303.14658, 2023.

Ruida Zhou, Chao Tian, and Tie Liu. Exactly tight information-theoretic generalization error bound for the quadratic gaussian problem. arXiv preprint arXiv:2305.00876, 2023.
Mahdi Haghifam, Borja Rodríguez-Gálvez, Ragnar Thobaben, Mikael Skoglund, Daniel M Roy, and Gintare Karolina Dziugaite. Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization. In International Conference on Algorithmic Learning Theory, pages 663-706. PMLR, 2023.
Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning Research, 2:499-526, 2002.
Yuheng Bu, Shaofeng Zou, and Venugopal V Veeravalli. Tightening mutual information based bounds on generalization error. In 2019 IEEE International Symposium on Information Theory (ISIT), pages 587-591. IEEE, 2019.

Gergely Neu, Gintare Karolina Dziugaite, Mahdi Haghifam, and Daniel M Roy. Information-theoretic generalization bounds for stochastic gradient descent. In Conference on Learning Theory. PMLR, 2021.
Ziqiao Wang and Yongyi Mao. On the generalization of models trained with SGD: Information-theoretic bounds and implications. In International Conference on Learning Representations, 2022.
Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. On the noisy gradient descent that generalizes as sgd. In International Conference on Machine Learning. PMLR, 2020.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling sgd with stochastic differential equations (sdes). Advances in Neural Information Processing Systems, 2021.

Thank You!

[^0]: ${ }^{1} \mathrm{~A}$ random variable X is R-subgaussian if for any $\rho, \log \mathbb{E} \exp (\rho(X-\mathbb{E} X)) \leq \rho^{2} R^{n} \frac{\mathrm{~m}}{} 2$.

[^1]: ${ }^{2} \mathrm{~A}$ random variable X is R-subgaussian if for any $\rho, \log \mathbb{E} \exp (\rho(X-\mathbb{E} X)) \leq \rho^{2} R^{\frac{1}{m}} 2$.

