Information-Theoretic Analysis of Unsupervised Domain Adaptation

Ziqiao Wang¹ Yongyi Mao¹

¹School of EECS, University of Ottawa

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

Preliminary

- 3 Upper Bounds for PP Generalization Error
- Upper Bounds for EP Generalization Error
- 5 Applications

・ロン ・四 ・ ・ ヨン・

Unsupervised Domain Adaptation (UDA): leveraging both labeled source domain data and unlabeled target domain data to carry out various tasks in the target domain

<ロ> <同> <同> <同> < 同> < 同> < 同> <

- Unsupervised Domain Adaptation (UDA): leveraging both labeled source domain data and unlabeled target domain data to carry out various tasks in the target domain
- ▷ Nguyen, A. Tuan, et al. "KL Guided Domain Adaptation." ICLR 2022.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Unsupervised Domain Adaptation (UDA): leveraging both labeled source domain data and unlabeled target domain data to carry out various tasks in the target domain
- Nguyen, A. Tuan, et al. "KL Guided Domain Adaptation." ICLR 2022.
 Representation Network:
 - Input: data
 - \triangleright Output: a mean vector $\hat{\mu} \in \mathbb{R}^d$ and a variance vector $\hat{\sigma}^2 \in \mathbb{R}^d$
 - $\triangleright \mbox{ Gaussian of source domain } \mathcal{N}(\hat{\mu}_s, \hat{\sigma}_s^2 I_d); \mbox{ Gaussian of target domain } \mathcal{N}(\hat{\mu}_t, \hat{\sigma}_t^2 I_d\})$
 - Minimizing KL divergence between two Gaussian distributions

- Unsupervised Domain Adaptation (UDA): leveraging both labeled source domain data and unlabeled target domain data to carry out various tasks in the target domain
- Nguyen, A. Tuan, et al. "KL Guided Domain Adaptation." ICLR 2022.
 Representation Network:
 - Input: data
 - \triangleright Output: a mean vector $\hat{\mu} \in \mathbb{R}^d$ and a variance vector $\hat{\sigma}^2 \in \mathbb{R}^d$
 - $\triangleright \mbox{ Gaussian of source domain } \mathcal{N}(\hat{\mu}_s, \hat{\sigma}_s^2 I_d); \mbox{ Gaussian of target domain } \mathcal{N}(\hat{\mu}_t, \hat{\sigma}_t^2 I_d\})$
 - Minimizing KL divergence between two Gaussian distributions
 - ▷ Classifier:
 - ▷ Sampling from $\mathcal{N}(\hat{\mu}_{s}, \hat{\sigma}_{s}^{2}\mathbf{I}_{d})$
 - Minimizing cross-entropy loss

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

Preliminary

3 Upper Bounds for PP Generalization Error

Upper Bounds for EP Generalization Error

5 Applications

・ロン ・四 ・ ・ ヨン・

Notations

- ▷ Instance space: $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- ▷ Hypothesis space: $W \subseteq \mathbb{R}^d$; Predictor space: $\mathcal{F} = \{f_w : \mathcal{X} \to \mathcal{Y} | w \in \mathcal{W}\}$
- \triangleright Source data $Z = (X, Y) \sim \mu$ and target data $Z' = (X', Y') \sim \mu'$
- ▷ Labeled source sample: $S = \{Z_i\}_{i=1}^n \stackrel{\text{i.i.d}}{\sim} \mu^{\otimes n}$; Unlabelled target sample $S'_{X'} = \{X'_j\}_{j=1}^m \stackrel{\text{i.i.d}}{\sim} P^{\otimes m}_{X'}$
- $\triangleright \text{ Learning algorithm: } \mathcal{A}: \mathcal{Z}^n \times \mathcal{X}^m \to \mathcal{W} \text{ by } P_{W|S,S'_{X'}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Generalization Error

- $\triangleright \text{ Loss: } \ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_0^+$
- We're interested in
 - ▷ Population risk of target domain: $R_{\mu'}(w) \triangleq \mathbb{E}_{Z'}[\ell(f_w(X'), Y')]$
 - ▷ Empirical risk of source domain: $R_S(w) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(f_w(X_i), Y_i)$
 - ▷ Expected empirical-to-population (EP) generalization error.

$$\operatorname{Err} \triangleq \mathbb{E}_{W,S} \left[R_{\mu'}(W) - R_S(W) \right] = \mathbb{E}_{W,S,S'_{X'}} \left[R_{\mu'}(W) - R_S(W) \right]$$

▷ Population-to-population (PP) generalization error for w:

$$\widetilde{\operatorname{Err}}(w) \triangleq R_{\mu'}(w) - R_{\mu}(w)$$

Relation between EP and PP:

$$|R_{\mu'}(w) - R_S(w)| \le |R_{\mu'}(w) - R_{\mu}(w)| + |R_{\mu}(w) - R_S(w)|$$

(日)

Assumptions of the Loss Function

- 1 Boundedness: $\ell(\cdot, \cdot)$ is bounded in [0, M].
- 2 Subgaussianity: $\ell(f_w(X), Y)$ is *R*-subgaussian ¹ under μ for any $w \in \mathcal{W}$.
- 3 Lipschitzness: $\ell(f_w(X), Y)$ is β -Lipschitz continuous in \mathcal{Z} w.r.t. a metric d for any $w \in \mathcal{W}$, i.e., $|\ell(f_w(x_1), y_1) \ell(f_w(x_2), y_2)| \leq \beta d(z_1, z_2)$.
- 4 Triangle and Symmetric: $\ell(\cdot, \cdot)$ satisfies the following: $\ell(y_1, y_2) = \ell(y_2, y_1)$ and $\ell(y_1, y_2) \le \ell(y_1, y_3) + \ell(y_3, y_2)$ for any $y_1, y_2, y_3 \in \mathcal{Y}$.

¹A random variable X is R-subgaussian if for any ρ , $\log \mathbb{E} \exp \left(\rho(X - \mathbb{E}X)\right) \leq \rho^2 R^2 / 2$. $\Xi \sim 2 \sqrt{C}$

Outline

Preliminary

Opper Bounds for PP Generalization Error

Upper Bounds for EP Generalization Error

5 Applications

・ロト ・回 ト ・ヨト ・ヨト

Main Ingredients

Lemma 1 (Donsker and Varadhan's variational formula)

Let Q, P be probability measures on Θ , for any bounded measurable function $f: \Theta \to \mathbb{R}$, we have $D_{KL}(Q||P) = \sup_f \mathbb{E}_{\theta \sim Q} [f(\theta)] - \log \mathbb{E}_{\theta \sim P} [\exp f(\theta)].$

Also called "change of measure inequality", " the Legendre transform of KL divergence" ...

Lemma 2

Let *Q* and *P* be probability measures on Θ . Let $\theta' \sim Q$ and $\theta \sim P$. If $g(\theta)$ is *R*-subgaussian, then,

$$\left|\mathbb{E}_{ heta'\sim Q}\left[g(heta')
ight]-\mathbb{E}_{ heta\sim P}\left[g(heta)
ight]
ight|\leq \sqrt{2R^2 \mathrm{D}_{\mathrm{KL}}(Q||P)}.$$

Bounding PP Error by KL Divergence

Theorem 1

If Assumption 2 holds, then for any $w \in W$, $\left|\widetilde{\operatorname{Err}}(w)\right| \leq \sqrt{2R^2 D_{\operatorname{KL}}(\mu'||\mu)}$.

< ロ > < 同 > < 臣 > < 臣 > -

Bounding PP Error by KL Divergence

Theorem 1

If Assumption 2 holds, then for any
$$w \in W$$
, $\left|\widetilde{\operatorname{Err}}(w)\right| \leq \sqrt{2R^2 D_{\operatorname{KL}}(\mu'||\mu)}$.

Corollary 1

Suppose that $f_w = g \circ h$ (where *h* is a function mapping \mathcal{X} to a representation space \mathcal{T} and *g* is a function mapping \mathcal{T} to \mathcal{Y}) and that Assumption 2 holds. then for any $w \in \mathcal{W}$,

$$R_{\mu}(w) - \sqrt{2R^2} \mathrm{D}_{\mathrm{KL}}(\mu'||\mu) \le R_{\mu'}(w) \le R_{\mu}(w) + \sqrt{2R^2} \mathrm{D}_{\mathrm{KL}}(\mu'_{\mathrm{h}}||\mu_{\mathrm{h}}).$$

・ロン ・回 ・ ・ ヨン・

Bounding PP Error by KL Divergence

Theorem 1

If Assumption 2 holds, then for any
$$w \in W$$
, $\left|\widetilde{\operatorname{Err}}(w)\right| \leq \sqrt{2R^2 D_{\operatorname{KL}}(\mu'||\mu)}$.

Corollary 1

Suppose that $f_w = g \circ h$ (where *h* is a function mapping \mathcal{X} to a representation space \mathcal{T} and *g* is a function mapping \mathcal{T} to \mathcal{Y}) and that Assumption 2 holds. then for any $w \in \mathcal{W}$,

$$R_{\mu}(w) - \sqrt{2R^2 D_{\mathrm{KL}}(\mu'||\mu)} \le R_{\mu'}(w) \le R_{\mu}(w) + \sqrt{2R^2 D_{\mathrm{KL}}(\mu'_{\mathrm{h}}||\mu_{\mathrm{h}})}.$$

Corollary 2

If Assumption 1 holds, $\left|\widetilde{\operatorname{Err}}(w)\right| \leq \frac{M}{\sqrt{2}} \sqrt{\min\{\operatorname{D}_{\operatorname{KL}}(\mu||\mu'), \operatorname{D}_{\operatorname{KL}}(\mu'||\mu)\}}} \leq \frac{M}{2} \sqrt{\operatorname{D}_{\operatorname{KL}}(\mu||\mu') + \operatorname{D}_{\operatorname{KL}}(\mu'||\mu)}.$

Incorrect pseudo labels may even hurt the target domain performance.

Suppose the trained model Q can well approximate the real mapping between X and Y on source domain (i.e. $Q_{Y|T} = P_{Y|T}$).

Let \hat{Y}' be the pseudo label of T' generated by the trained model, i.e., $Q_{\hat{Y}'|T'} = Q_{Y|T}$. Let $Q_{T',\hat{Y}'} = P_{T'}Q_{\hat{Y}'|T'}$, then

$$D_{KL}(P_{T',Y'}||P_{T,Y}) = \mathbb{E}_{P_{T',Y'}} \log \frac{P_{T',Y'}Q_{T',\hat{Y'}}}{Q_{T',\hat{Y'}}P_{T,Y}} = D_{KL}(P_{T'}||P_{T}) + D_{KL}(P_{Y'|T'}||Q_{\hat{Y'}|T'}).$$
(1)

For a specific t' and y', if $P(Y' = y'|T' = t') \neq 0$ and $Q(\hat{Y}' = y'|T' = t') = 0$, then the second term in RHS of Eq. (1), $D_{KL}(P_{Y'|T'}||Q_{\hat{Y}'|T'}) \rightarrow \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Theorem 2

If Assumption 4 holds and let $\ell(f_{w'}(X), f_w(X))$ be *R*-subgaussian for any $w, w' \in \mathcal{W}$. Then for any w, $\widetilde{\operatorname{Err}}(w) \leq \sqrt{2R^2 D_{\operatorname{KL}}(P_{X'}||P_X)} + \lambda^*$, where $\lambda^* = \min_{w \in \mathcal{W}} R_{\mu'}(w) + R_{\mu}(w)$.

Here λ^* measures the possibility of whether the domain adaptation algorithm will succeed under the oracle knowledge of μ and μ' .

Bounding PP Error by Wasserstein Distance

Theorem 3

If Assumption 3 holds, then
$$\left|\widetilde{\operatorname{Err}}(w)\right| \leq \beta \mathbb{W}(\mu', \mu)$$
.

Main tool: Kantorovich-Rubinstein duality of Wasserstein distance

Lemma 3 (KR duality)

For any two distributions P and Q, we have

$$\mathbb{W}(P,Q) = \sup_{f \in 1-\operatorname{Lip}(\rho)} \int_{\mathcal{X}} f dP - \int_{\mathcal{X}} f dQ,$$

where the supremum is taken over all 1-Lipschitz functions in the metric *d*, i.e. $|f(x) - f(x')| \le d(x, x')$ for any $x, x' \in \mathcal{X}$.

< ロ > < 同 > < 臣 > < 臣 > -

Corollary 3

If Assumption 1 holds and let d be the discrete metric, then

$$\left|\widetilde{\operatorname{Err}}(w)\right| \le M \operatorname{TV}(\mu', \mu) \le M \sqrt{\min\left\{\frac{1}{2} \operatorname{D}_{\operatorname{KL}}(\mu'||\mu), 1 - e^{-\operatorname{D}_{\operatorname{KL}}(\mu'||\mu)}\right\}}.$$

Main tool for the second inequality: Pinsker's inequality and Bretagnolle-Huber inequality.

Theorem 4

If Assumption 4 holds and $\ell(f_w(X), f_{w'}(X))$ is β -Lipschitz in \mathcal{X} for any $w, w' \in \mathcal{W}$, then for any $w \in \mathcal{W}$, $\widetilde{\operatorname{Err}}(w) \leq \beta \mathbb{W}(P_{X'}, P_X) + \lambda^*$, where $\lambda^* = \min_{w \in \mathcal{W}} R_{\mu'}(w) + R_{\mu}(w)$.

A D A A B A A B A A B A

Outline

Preliminary

Upper Bounds for PP Generalization Error

Upper Bounds for EP Generalization Error

Applications

・ロト ・回 ト ・ヨト ・ヨト

Additional Prerequisites

Definition 1 (Disintegrated Mutual Information)

Let *X*, *Y* and *Z* be random variables and *z* be a realization of *Z*. The disintegrated mutual information of *X* and *Y* given Z = z is $I^{z}(X;Y) \triangleq D_{KL}(P_{X,Y|Z=z}||P_{X|Z=z}P_{Y|Z=z})$.

Note that the conditional mutual information $I(X; Y|Z) = \mathbb{E}_Z I^Z(X; Y)$.

Definition 2 (Lautum Information)

The lautum information between X and Y is defined as

 $L(X;Y) \triangleq \mathbf{D}_{\mathrm{KL}}(P_X P_Y || P_{XY}).$

・ロト ・回ト ・ヨト ・ヨト … ヨ

MI Bound for EP

Theorem 5

Assume $\ell(f_w(X'), Y')$ is *R*-subgaussian under μ' for any $w \in W$. Then

$$|\mathrm{Err}| \leq rac{1}{nm} \sum_{j=1}^m \sum_{i=1}^n \mathbb{E}_{X_j'} \sqrt{2R^2 I^{X_j'}(W; Z_i)} + \sqrt{2R^2 \mathrm{D}_{\mathrm{KL}}(\mu || \mu')}.$$

æ

・ロ・・ (日・・ 日・・ 日・・

MI Bound for EP

Theorem 5

Assume $\ell(f_w(X'), Y')$ is *R*-subgaussian under μ' for any $w \in W$. Then

$$|\operatorname{Err}| \leq \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j}} \sqrt{2R^{2}I^{X'_{j}}(W; Z_{i})} + \sqrt{2R^{2}\operatorname{D}_{\operatorname{KL}}(\mu||\mu')}.$$

Remark 1

Moving the expectation inside the square root function by Jensen's ineq. By $Z_i \perp \perp X'_i$, we have

$$I(W; Z_i | X'_j) = I(W; Z_i | X'_j) + I(Z_i; X'_j) = I(W; Z_i) + I(X'_j; Z_i | W).$$

The term $I(W; Z_i)$ will vanish as $n \to \infty$ and the term $I(X'_j; Z_i | W)$ will also vanish as $n, m \to \infty$.

3

・ロン ・四 と ・ 回 と ・ 回 と

Stronger Bounds

Corollary 4

Let Assumption 1 hold. Then

$$\begin{aligned} |\mathrm{Err}| \leq & \frac{M}{\sqrt{2}nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j}} \sqrt{\min\left\{I^{X'_{j}}(W;Z_{i}), L^{X'_{j}}(W;Z_{i})\right\}} \\ &+ \frac{M}{\sqrt{2}} \sqrt{\min\left\{\mathbf{D}_{\mathrm{KL}}(\mu||\mu'), \mathbf{D}_{\mathrm{KL}}(\mu'||\mu)\right\}}, \end{aligned}$$

where $L^{X'_j}(\cdot; \cdot)$ is the disintegrated version of Lautum information.

Stronger Bounds

Theorem 6

Assume ℓ is Lipschitz for both $w \in W$ and $z \in Z$, i.e., $|\ell(f_w(x), y) - \ell(f_w(x'), y')| \le \beta d_1(z, z')$ for all $z, z' \in Z$ and $|\ell(f_w(x), y) - \ell(f_{w'}(x), y)| \le \beta' d_2(w, w')$ for all $w, w' \in W$, then

$$|\mathrm{Err}| \leq \frac{\beta'}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_j, Z_i} \mathbb{W}(P_{W|Z_i, X'_j}, P_{W|X'_j}) + \beta \mathbb{W}(\mu, \mu').$$

Further, if Assumption 1 hold. Then

$$\begin{aligned} \widetilde{\mathrm{Err}} &| \leq \frac{M}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j},Z_{i}} \left[\mathrm{TV}(P_{W|Z_{i},X'_{j}}, P_{W|X'_{j}}) \right] + M \mathrm{TV}(\mu, \mu') \\ &\leq \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} \mathbb{E}_{X'_{j},Z_{i}} \sqrt{\frac{M^{2}}{2} \mathrm{D}_{\mathrm{KL}}(P_{W|Z_{i},X'_{j}}||P_{W|X'_{j}})} + \sqrt{\frac{M^{2}}{2} \mathrm{D}_{\mathrm{KL}}(\mu||\mu')}. \end{aligned}$$

э

・ロト ・回ト ・ヨト ・ヨト

Outline

- Preliminary
- 3 Upper Bounds for PP Generalization Error
 - Upper Bounds for EP Generalization Error

Applications

・ロ・・ (日・・ (日・・ (日・)

Application: Gradient Penalty as an Universal Regularizer

Consider a "noisy" iterative algorithm for updating W, e.g., SGLD. At each time step t,

- \triangleright labelled source mini-batch: Z_{B_t}
- \triangleright unlabelled target mini-batch: X'_{B_t}
- ▷ gradient: $g(W_{t-1}, Z_{B_t}, X'_{B_t})$
- ▷ updating rule: $W_t = W_{t-1} \eta_t g(W_{t-1}, Z_{B_t}, X'_{B_t}) + N_t$ where η_t is the learning rate and $N_t \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Application: Gradient Penalty as an Universal Regularizer

Theorem 7

Under the assumption of Theorem 5. Let the total iteration number be *T* and let $G_t = g(W_{t-1}, Z_{B_t}, X'_{B_t})$, then

$$|\operatorname{Err}| \leq \sqrt{\frac{R^2}{n} \sum_{t=1}^{T} \frac{\eta_t^2}{\sigma_t^2} \mathbb{E}_{S'_{X'}}, W_{t-1}, S\left[\left|\left|G_t - \mathbb{E}_{Z_{B_t}}\left[G_t\right]\right|\right|^2\right] + \sqrt{2R^2 \mathcal{D}_{\operatorname{KL}}(\mu||\mu')}.$$

restrict the gradient norm \implies reduce |Err|.

This strategy will also restrict the distance between the final output W_T and the initialization W_0 , effectively shrinking the hypothesis space accessible by the algorithm.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Motivation: Discrepancy between $P_{Y|T}$ and $P_{Y'|T'}$

▷ Nguyen et al. (2022) shows that $D_{KL}(P_{Y'|T'}||P_{Y|T}) \leq D_{KL}(P_{Y'|X'}||P_{Y|X})$ if I(X;Y) = I(T;Y). Penalizing the KL of the marginals is safe.

イロン イヨン イヨン イヨン

Motivation: Discrepancy between $P_{Y|T}$ and $P_{Y'|T'}$

- ▷ Nguyen et al. (2022) shows that $D_{KL}(P_{Y'|T'}||P_{Y|T}) \leq D_{KL}(P_{Y'|X'}||P_{Y|X})$ if I(X; Y) = I(T; Y). Penalizing the KL of the marginals is safe.
- ▷ The condition I(X; Y) = I(T; Y) can be difficult to satisfy when ℓ is crossentropy.

Motivation: Discrepancy between $P_{Y|T}$ and $P_{Y'|T'}$

- ▷ Nguyen et al. (2022) shows that $D_{KL}(P_{Y'|T'}||P_{Y|T}) \leq D_{KL}(P_{Y'|X'}||P_{Y|X})$ if I(X; Y) = I(T; Y). Penalizing the KL of the marginals is safe.
- ▷ The condition I(X; Y) = I(T; Y) can be difficult to satisfy when ℓ is crossentropy. By DPI on Y - X - T, $I(X; Y) \ge I(T; Y) = H(Y) - H(Y|T)$.

$$\mathbb{E}_{W,Z_i}\left[\ell(f_W(T_i), Y_i)\right] = H(Y_i|T_i) + \mathbb{E}_{T_i,W}\left[\mathsf{D}_{\mathsf{KL}}(P_{Y_i|T_i,W}||Q_{Y_i|T_i,W})\right] - I(W;Y_i|T_i).$$
(2)

・ロト ・回ト ・ヨト ・ヨト … ヨ

Motivation: Discrepancy between $P_{Y|T}$ and $P_{Y'|T'}$

- ▷ Nguyen et al. (2022) shows that $D_{KL}(P_{Y'|T'}||P_{Y|T}) \leq D_{KL}(P_{Y'|X'}||P_{Y|X})$ if I(X; Y) = I(T; Y). Penalizing the KL of the marginals is safe.
- ▷ The condition I(X; Y) = I(T; Y) can be difficult to satisfy when ℓ is crossentropy. By DPI on Y - X - T, $I(X; Y) \ge I(T; Y) = H(Y) - H(Y|T)$.

$$\mathbb{E}_{W,Z_i}\left[\ell(f_W(T_i), Y_i)\right] = H(Y_i|T_i) + \mathbb{E}_{T_i,W}\left[D_{\mathrm{KL}}(P_{Y_i|T_i,W}||Q_{Y_i|T_i,W})\right] - I(W;Y_i|T_i).$$
(2)

Minimizing cross-entropy \Rightarrow Minimizing H(Y|T)

 $I(W; Y_i|T_i)$ increases \implies W just simply memorizes the label Y_i , resulting a form of overfitting.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Controlling Label Information

In Theorem 5, $I^{T'_{j}}(W; Z_{i}) = I^{T'_{j}}(W; T_{i}) + I^{T'_{j}}(W; Y_{i}|T_{i}).$

æ

・ロ・・ (日・・ 日・・ 日・・

Controlling Label Information

In Theorem 5,
$$I^{T'_{j}}(W; Z_{i}) = I^{T'_{j}}(W; T_{i}) + I^{T'_{j}}(W; Y_{i}|T_{i}).$$

Lemma 4 (Golden Formula)

For two random variables X and Y, we have

$$I(X;Y) = \inf_{P} \mathbb{E}_{X} \left[\mathsf{D}_{\mathsf{KL}}(Q_{Y|X}||P) \right],$$

where the infimum is achieved at $P = Q_Y$.

Thus,

$$I^{T'_j}(W;Y_i|T_i) \leq \inf_{\mathcal{Q}} \mathbb{E}_{T_i} \left[\mathsf{D}_{\mathsf{KL}}(P_{W|Y_i,T_i,T'_j=t'_j}||\mathcal{Q}_{W|T_i,T'_j=t'_j}) \right].$$

æ

・ロ・・ (日・・ 日・・ 日・・

Controlling Label Information

Assume $P = \mathcal{N}(W, \sigma^2 I_d | Y_i, T_i, T'_j = t'_j)$ and let $Q = \mathcal{N}(\widetilde{W}, \widetilde{\sigma}^2 I_d | T_i, T'_j = t'_j)$, we have

$$I^{T_j'}(W;Y_i|T_i) \leq \mathbb{E}_{T_i}\left[\mathrm{D}_{\mathrm{KL}}(P_{W|Y_i,T_i,T_j'=t_j'}||Q_{\widetilde{W}|T_i,T_j'=t_j'})
ight] \propto ||W-\widetilde{W}||^2.$$

Creating an auxiliary classifier $f_{\tilde{w}}$ that does not depend on *Y*.

- ▷ In each iteration, we use the pseudo labels of target data (and source data) assigned by f_w to train $f_{\widetilde{w}}$
- ▷ Adding $||W \widetilde{W}||^2$ as a regularizer in the training of *W*.

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Experimental Results-RotatedMNIST

RotatedMNIST is built based on the MNIST dataset and consists of six domains, which are rotated MNIST images with rotation angle 0° , 15° , 30° , 45° , 60° and 75° , respectively.

	RotatedMNIST (0° as source domain)						
Method	15°	30°	45°	60°	75°	Ave	
ERM	97.5±0.2	84.1±0.8	53.9 ± 0.7	34.2±0.4	22.3±0.5	58.4	
DANN	97.3±0.4	90.6±1.1	68.7 ± 4.2	30.8±0.6	19.0±0.6	61.3	
MMD	97.5±0.1	95.3±0.4	73.6 ± 2.1	44.2±1.8	32.1±2.1	68.6	
CORAL	97.1±0.3	82.3±0.3	56.0 ± 2.4	30.8±0.2	27.1±1.7	58.7	
WD	96.7±0.3	93.1±1.2	64.1 ± 3.3	41.4±7.6	27.6±2.0	64.6	
KL	97.8±0.1	97.1±0.2	93.4 ± 0.8	75.5±2.4	68.1±1.8	86.4	
ERM-GP	97.5±0.1	86.2±0.5	62.0±1.9	34.8±2.1	26.1±1.2	61.2	
ERM-CL	97.3±0.1	84.1±0.1	56.9±2.5	34.2±1.9	25.5±1.6	59.6	
KL-GP	98.2±0.2	96.9±0.1	95.0±0.6	88.0±8.1	78.1±2.5	91.2	
KL-CL	98.4±0.2	97.3±0.2	95.6±0.1	83.0±8.2	73.6±4.0	89.6	

Table 1: RotatedMNIST.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Experimental Results-Digits

Digits consists of 3 sub-datasets, namely MNIST, USPS and SVHN, and the corresponding domain adaptation tasks are $M \rightarrow U$, $U \rightarrow M$, $S \rightarrow M$.

	Digits						
Method	$\textbf{M} \rightarrow \textbf{U}$	$\textbf{U} \rightarrow \textbf{M}$	$\textbf{S} \rightarrow \textbf{M}$	Ave			
ERM	73.1±4.2	54.8±6.2	65.9 ± 1.4	64.6			
DANN	90.7±0.4	91.2±0.8	71.1 ±0.5	84.3			
MMD	91.8±0.3	94.4±0.5	82.8 ±0.3	89.7			
CORAL	88.0±1.9	83.3±0.1	69.3 ±0.6	80.2			
WD	88.2±0.6	60.2±1.8	68.4 ±2.5	72.3			
KL	98.2±0.2	97.3±0.5	92.5 ±0.9	96.0			
ERM-GP	91.3±1.6	72.7±4.2	68.4±0.2	77.5			
ERM-CL	88.9±0.4	71.2±3.6	73.5±1.4	77.9			
KL-GP	98.8±0.1	97.8±0.1	93.8±1.1	96.8			
KL-CL	98.9±0.1	97.7±0.1	93.0±0.3	96.5			

Table 2: Digits.

・ロ・・ (日・・ 日・・ 日・・

Thank you!

zwang286@uottawa.ca

æ

<ロ> <同> <同> < 同> < 同> < 同> <