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Background

Background
▷ Unsupervised Domain Adaptation (UDA): leveraging both labeled source

domain data and unlabeled target domain data to carry out various tasks
in the target domain

▷ Nguyen, A. Tuan, et al. "KL Guided Domain Adaptation." ICLR 2022.
▷ Representation Network:

▷ Input: data

▷ Output: a mean vector µ̂ ∈ Rd and a variance vector σ̂2 ∈ Rd

▷ Gaussian of source domain N (µ̂s, σ̂
2
s Id); Gaussian of target do-

main N (µ̂t, σ̂
2
t Id})

▷ Minimizing KL divergence between two Gaussian distributions

▷ Classifier:
▷ Sampling from N (µ̂s, σ̂

2
s Id)

▷ Minimizing cross-entropy loss
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Preliminary

Notations

▷ Instance space: Z = X × Y

▷ Hypothesis space: W ⊆ Rd; Predictor space: F = {fw : X → Y|w ∈ W}

▷ Source data Z = (X,Y) ∼ µ and target data Z′ = (X′,Y ′) ∼ µ′

▷ Labeled source sample: S = {Zi}n
i=1

i.i.d∼ µ⊗n; Unlabelled target sample

S′
X′ = {X′

j}m
j=1

i.i.d∼ P⊗m
X′

▷ Learning algorithm: A : Zn ×Xm → W by PW|S,S′
X′
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Preliminary

Generalization Error

▷ Loss: ℓ : Y × Y → R+
0

▷ We’re interested in
▷ Population risk of target domain: Rµ′(w) ≜ EZ′ [ℓ(fw(X′),Y ′)]

▷ Empirical risk of source domain: RS(w) ≜ 1
n

∑n
i=1 ℓ(fw(Xi),Yi)

▷ Expected empirical-to-population (EP) generalization error:

Err ≜ EW,S [Rµ′(W)− RS(W)] = EW,S,S′
X′
[Rµ′(W)− RS(W)]

▷ Population-to-population (PP) generalization error for w:

Ẽrr(w) ≜ Rµ′(w)− Rµ(w)

▷ Relation between EP and PP:

|Rµ′(w)− RS(w)| ≤ |Rµ′(w)− Rµ(w)|+ |Rµ(w)− RS(w)|
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Preliminary

Assumptions of the Loss Function

1 Boundedness: ℓ(·, ·) is bounded in [0,M].

2 Subgaussianity: ℓ(fw(X),Y) is R-subgaussian 1 under µ for any w ∈ W.

3 Lipschitzness: ℓ(fw(X),Y) is β-Lipschitz continuous in Z w.r.t. a metric d
for any w ∈ W, i.e., |ℓ(fw(x1), y1)− ℓ(fw(x2), y2)| ≤ βd(z1, z2).

4 Triangle and Symmetric: ℓ(·, ·) satisfies the following: ℓ(y1, y2) = ℓ(y2, y1)
and ℓ(y1, y2) ≤ ℓ(y1, y3) + ℓ(y3, y2) for any y1, y2, y3 ∈ Y.

1A random variable X is R-subgaussian if for any ρ, logE exp (ρ (X − EX)) ≤ ρ2R2/2.
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Upper Bounds for PP Generalization Error

Main Ingredients

Lemma 1 (Donsker and Varadhan’s variational formula)

Let Q, P be probability measures on Θ, for any bounded measurable function
f : Θ → R, we have DKL(Q||P) = supf Eθ∼Q [f (θ)]− logEθ∼P [exp f (θ)].

Also called “change of measure inequality”, “ the Legendre transform of KL
divergence” ...

Lemma 2

Let Q and P be probability measures on Θ. Let θ′ ∼ Q and θ ∼ P. If g(θ) is
R-subgaussian, then,

|Eθ′∼Q [g(θ′)]− Eθ∼P [g(θ)]| ≤
√

2R2DKL(Q||P).

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 9 / 28



Upper Bounds for PP Generalization Error

Bounding PP Error by KL Divergence

Theorem 1

If Assumption 2 holds, then for any w ∈ W,
∣∣∣Ẽrr(w)

∣∣∣ ≤ √
2R2DKL(µ′||µ).

Corollary 1

Suppose that fw = g ◦ h (where h is a function mapping X to a representation
space T and g is a function mapping T to Y) and that Assumption 2 holds.
then for any w ∈ W,

Rµ(w)−
√

2R2DKL(µ′||µ) ≤ Rµ′(w) ≤ Rµ(w) +
√

2R2DKL(µ′
h||µh).

Corollary 2

If Assumption 1 holds,∣∣∣Ẽrr(w)
∣∣∣ ≤ M√

2

√
min{DKL(µ||µ′),DKL(µ′||µ)} ≤ M

2

√
DKL(µ||µ′) + DKL(µ′||µ).
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Upper Bounds for PP Generalization Error

Incorrect pseudo labels may even hurt the target
domain performance.

Suppose the trained model Q can well approximate the real mapping between
X and Y on source domain (i.e. QY|T = PY|T ).

Let Ŷ ′ be the pseudo label of T ′ generated by the trained model, i.e., QŶ′|T′ =

QY|T . Let QT′,Ŷ′ = PT′QŶ′|T′ , then

DKL(PT′,Y′ ||PT,Y) = EPT′,Y′ log
PT′,Y′QT′,Ŷ′

QT′,Ŷ′PT,Y
= DKL(PT′ ||PT) + DKL(PY′|T′ ||QŶ′|T′).

(1)

For a specific t′ and y′, if P(Y ′ = y′|T ′ = t′) ̸= 0 and Q(Ŷ ′ = y′|T ′ = t′) = 0, then
the second term in RHS of Eq. (1), DKL(PY′|T′ ||QŶ′|T′) → ∞.

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 11 / 28



Upper Bounds for PP Generalization Error

Theorem 2

If Assumption 4 holds and let ℓ(fw′(X), fw(X)) be R-subgaussian for any
w,w′ ∈ W. Then for any w, Ẽrr(w) ≤

√
2R2DKL(PX′ ||PX) + λ∗, where λ∗ =

minw∈W Rµ′(w) + Rµ(w).

Here λ∗ measures the possibility of whether the domain adaptation algorithm
will succeed under the oracle knowledge of µ and µ′.
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Upper Bounds for PP Generalization Error

Bounding PP Error by Wasserstein Distance

Theorem 3

If Assumption 3 holds, then
∣∣∣Ẽrr(w)

∣∣∣ ≤ βW(µ′, µ).

Main tool: Kantorovich–Rubinstein duality of Wasserstein distance

Lemma 3 (KR duality)

For any two distributions P and Q, we have

W(P,Q) = sup
f∈1−Lip(ρ)

∫
X

fdP −
∫
X

fdQ,

where the supremum is taken over all 1-Lipschitz functions in the metric d, i.e.
|f (x)− f (x′)| ≤ d(x, x′) for any x, x′ ∈ X .

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 13 / 28



Upper Bounds for PP Generalization Error

Corollary 3

If Assumption 1 holds and let d be the discrete metric, then

∣∣∣Ẽrr(w)
∣∣∣ ≤ MTV(µ′, µ) ≤ M

√
min

{
1
2

DKL(µ′||µ), 1 − e−DKL(µ′||µ)
}
.

Main tool for the second inequality: Pinsker’s inequality and Bretagnolle-Huber
inequality.

Theorem 4

If Assumption 4 holds and ℓ(fw(X), fw′(X)) is β-Lipschitz in X for any w,w′ ∈ W,
then for any w ∈ W, Ẽrr(w) ≤ βW(PX′ ,PX) + λ∗, where λ∗ = minw∈W Rµ′(w) +
Rµ(w).
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Upper Bounds for EP Generalization Error

Additional Prerequisites

Definition 1 (Disintegrated Mutual Information)

Let X, Y and Z be random variables and z be a realization of Z. The
disintegrated mutual information of X and Y given Z = z is Iz(X;Y) ≜
DKL(PX,Y|Z=z||PX|Z=zPY|Z=z).

Note that the conditional mutual information I(X;Y|Z) = EZIZ(X;Y).

Definition 2 (Lautum Information)

The lautum information between X and Y is defined as

L(X;Y) ≜ DKL(PXPY ||PXY).

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 16 / 28



Upper Bounds for EP Generalization Error

MI Bound for EP

Theorem 5

Assume ℓ(fw(X′),Y ′) is R-subgaussian under µ′ for any w ∈ W. Then

|Err| ≤ 1
nm

m∑
j=1

n∑
i=1

EX′
j

√
2R2IX′

j (W;Zi) +
√

2R2DKL(µ||µ′).

Remark 1

Moving the expectation inside the square root function by Jensen’s ineq.
By Zi ⊥⊥ X′

j , we have

I(W;Zi|X′
j ) = I(W;Zi|X′

j ) + I(Zi;X′
j ) = I(W;Zi) + I(X′

j ;Zi|W).

The term I(W;Zi) will vanish as n → ∞ and the term I(X′
j ;Zi|W) will also vanish

as n,m → ∞.

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 17 / 28
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Upper Bounds for EP Generalization Error

Stronger Bounds

Corollary 4

Let Assumption 1 hold. Then

|Err| ≤ M√
2nm

m∑
j=1

n∑
i=1

EX′
j

√
min

{
IX′

j (W;Zi),LX′
j (W;Zi)

}
+

M√
2

√
min {DKL(µ||µ′),DKL(µ′||µ)},

where LX′
j (·; ·) is the disintegrated version of Lautum information.
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Upper Bounds for EP Generalization Error

Stronger Bounds

Theorem 6

Assume ℓ is Lipschitz for both w ∈ W and z ∈ Z, i.e., |ℓ(fw(x), y)−ℓ(fw(x′), y′)| ≤
βd1(z, z′) for all z, z′ ∈ Z and |ℓ(fw(x), y)− ℓ(fw′(x), y)| ≤ β′d2(w,w′) for all w,w′ ∈
W, then

|Err| ≤ β′

nm

m∑
j=1

n∑
i=1

EX′
j ,ZiW(PW|Zi,X′

j
,PW|X′

j
) + βW(µ, µ′).

Further, if Assumption 1 hold. Then∣∣∣Ẽrr
∣∣∣ ≤ M

nm

m∑
j=1

n∑
i=1

EX′
j ,Zi

[
TV(PW|Zi,X′

j
,PW|X′

j
)
]
+ MTV(µ, µ′)

≤ 1
nm

m∑
j=1

n∑
i=1

EX′
j ,Zi

√
M2

2
DKL(PW|Zi,X′

j
||PW|X′

j
) +

√
M2

2
DKL(µ||µ′).
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Applications

Application: Gradient Penalty as an Universal
Regularizer

Consider a “noisy” iterative algorithm for updating W, e.g., SGLD. At each time
step t,
▷ labelled source mini-batch: ZBt

▷ unlabelled target mini-batch: X′
Bt

▷ gradient: g(Wt−1,ZBt ,X′
Bt
)

▷ updating rule: Wt = Wt−1 − ηtg(Wt−1,ZBt ,X′
Bt
) + Nt where ηt is the learning

rate and Nt ∼ N (0, σ2Id).

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 21 / 28



Applications

Application: Gradient Penalty as an Universal
Regularizer

Theorem 7

Under the assumption of Theorem 5. Let the total iteration number be T and
let Gt = g(Wt−1,ZBt ,X′

Bt
), then

|Err| ≤

√√√√R2

n

T∑
t=1

η2
t

σ2
t
ES′

X′ ,Wt−1,S

[∣∣∣∣Gt − EZBt
[Gt]

∣∣∣∣2]+√
2R2DKL(µ||µ′).

restrict the gradient norm =⇒ reduce |Err|.
This strategy will also restrict the distance between the final output WT and the
initialization W0, effectively shrinking the hypothesis space accessible by the
algorithm.

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 22 / 28



Applications

Application: Controlling Label Information for KL
Guided Marginal Alignment

Motivation: Discrepancy between PY|T and PY′|T′

▷ Nguyen et al. (2022) shows that DKL(PY′|T′ ||PY|T) ≤ DKL(PY′|X′ ||PY|X) if
I(X;Y) = I(T;Y). Penalizing the KL of the marginals is safe.

▷ The condition I(X;Y) = I(T;Y) can be difficult to satisfy when ℓ is cross-
entropy.
By DPI on Y − X − T, I(X;Y) ≥ I(T;Y) = H(Y)− H(Y|T).

EW,Zi [ℓ(fW(Ti),Yi)] = H(Yi|Ti) + ETi,W
[
DKL(PYi|Ti,W ||QYi|Ti,W)

]
− I(W;Yi|Ti).

(2)

Minimizing cross-entropy ⇏ Minimizing H(Y|T)
I(W;Yi|Ti) increases =⇒ W just simply memorizes the label Yi, resulting a
form of overfitting.

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 23 / 28
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Applications

Controlling Label Information

In Theorem 5, IT′
j (W;Zi) = IT′

j (W;Ti) + IT′
j (W;Yi|Ti).

Lemma 4 (Golden Formula)

For two random variables X and Y, we have

I(X;Y) = inf
P
EX

[
DKL(QY|X||P)

]
,

where the infimum is achieved at P = QY .

Thus,
IT′

j (W;Yi|Ti) ≤ inf
Q

ETi

[
DKL(PW|Yi,Ti,T′

j =t′j ||QW|Ti,T′
j =t′j )

]
.

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 24 / 28
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Applications

Controlling Label Information

Assume P = N (W, σ2Id|Yi,Ti,T ′
j = t′j) and let Q = N (W̃, σ̃2Id|Ti,T ′

j = t′j), we
have

IT′
j (W;Yi|Ti) ≤ ETi

[
DKL(PW|Yi,Ti,T′

j =t′j ||QW̃|Ti,T′
j =t′j

)
]
∝ ||W − W̃||2.

Creating an auxiliary classifier fw̃ that does not depend on Y.
▷ In each iteration, we use the pseudo labels of target data (and source

data) assigned by fw to train fw̃

▷ Adding ||W − W̃||2 as a regularizer in the training of W.

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 25 / 28



Applications

Experimental Results-RotatedMNIST

RotatedMNIST is built based on the MNIST dataset and consists of six do-
mains, which are rotated MNIST images with rotation angle 0◦, 15◦, 30◦, 45◦, 60◦

and 75◦, respectively.

Table 1: RotatedMNIST.

RotatedMNIST (0◦ as source domain)

Method 15◦ 30◦ 45◦ 60◦ 75◦ Ave

ERM 97.5±0.2 84.1±0.8 53.9±0.7 34.2±0.4 22.3±0.5 58.4
DANN 97.3±0.4 90.6±1.1 68.7±4.2 30.8±0.6 19.0±0.6 61.3
MMD 97.5±0.1 95.3±0.4 73.6±2.1 44.2±1.8 32.1±2.1 68.6

CORAL 97.1±0.3 82.3±0.3 56.0±2.4 30.8±0.2 27.1±1.7 58.7
WD 96.7±0.3 93.1±1.2 64.1±3.3 41.4±7.6 27.6±2.0 64.6
KL 97.8±0.1 97.1±0.2 93.4±0.8 75.5±2.4 68.1±1.8 86.4

ERM-GP 97.5±0.1 86.2±0.5 62.0±1.9 34.8±2.1 26.1±1.2 61.2
ERM-CL 97.3±0.1 84.1±0.1 56.9±2.5 34.2±1.9 25.5±1.6 59.6
KL-GP 98.2±0.2 96.9±0.1 95.0±0.6 88.0±8.1 78.1±2.5 91.2
KL-CL 98.4±0.2 97.3±0.2 95.6±0.1 83.0±8.2 73.6±4.0 89.6

Ziqiao Wang (EECS, University of Ottawa) IT Analysis of UDA 26 / 28



Applications

Experimental Results-Digits

Digits consists of 3 sub-datasets, namely MNIST, USPS and SVHN, and the
corresponding domain adaptation tasks are M→U, U→M, S→M.

Table 2: Digits.

Digits

Method M → U U → M S → M Ave

ERM 73.1±4.2 54.8±6.2 65.9±1.4 64.6
DANN 90.7±0.4 91.2±0.8 71.1±0.5 84.3
MMD 91.8±0.3 94.4±0.5 82.8±0.3 89.7

CORAL 88.0±1.9 83.3±0.1 69.3±0.6 80.2
WD 88.2±0.6 60.2±1.8 68.4±2.5 72.3
KL 98.2±0.2 97.3±0.5 92.5±0.9 96.0

ERM-GP 91.3±1.6 72.7±4.2 68.4±0.2 77.5
ERM-CL 88.9±0.4 71.2±3.6 73.5±1.4 77.9
KL-GP 98.8±0.1 97.8±0.1 93.8±1.1 96.8
KL-CL 98.9±0.1 97.7±0.1 93.0±0.3 96.5
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Thank you!

zwang286@uottawa.ca
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