
CST 3526 Stochastic Process Lecture 1 - 09/18/2025

Lecture 1: Review of Probability Theory I
Lecturer: Ziqiao Wang

In this lecture1, we will review the fundamental concepts of probability theory, including the definitions
of sample spaces and events, the axioms of probability, conditional probability, independence of events,
Theorem of Total Probability, and random variables along with their CDFs, PMFs and PDFs.

1 Random Experiments
A random experiment is an experiment whose outcome varies in an unpredictable manner when repeated
under the same conditions. To properly define a random experiment, one must provide an experimental
procedure with a clear and unambiguous description of what is being measured or observed.

Example 1. Specifying random experiments.
Experiment E1: Select a ball from an urn containing balls numbered 1 to 4. Suppose that balls 1 and 2

are black and that balls 3 and 4 are white. Note the number and color of the ball you select.
Experiment E2: Toss a coin three times and note the sequence of heads and tails.
Experiment E3: Toss a coin three times and note the number of heads.
Experiments E4: Pick two numbers at random between zero and one.

Definition 1.1 (Sample Space). The sample space Ω of a random experiment is defined as the set of all
possible outcomes.

Note that an outcome (or sample point) ω of a random experiment is an elementary result that cannot be
further decomposed into simpler results. In other words, outcomes are mutually exclusive—no two outcomes
can occur at the same time.

For example, Ω1 = {{1, b}, {2, b}, {3, w}, {4, w}}, Ω2 = {HHH,HHT,HTH,THH,TTH,THT,HTT,TTT},
Ω3 = {0, 1, 2, 3} and Ω4 = {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}.

Definition 1.2 (Discrete Sample Space). Ω is countable.

Definition 1.3 (Continuous Sample Space). Ω is not countable.

Definition 1.4 (Events). An event is a subset of Ω.

Remark 1.1. The certain event consists of all outcomes and hence always occurs, and the impossible
or null event ∅ contains no outcomes and hence never occurs. An event from a discrete sample space that
consists of a single outcome is called an elementary event.

2 The Axioms of Probability
Probabilities are numerical values assigned to events that quantify how “likely” it is about their occurrence
when a random experiment is performed. A probability law for a random experiment E is a rule that
assigns probabilities to the events associated with E. Formally, a probability law is a function P : F → [0, 1],
where F is a collection of events (subsets of the sample space Ω). For any event A ∈ F , the value P (A) is
called the probability of A.

1Reading: Chapter 2-3 of Leon-Garcia.
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Any probability assignment must satisfy:

Axiom I: P (A) ≥ 0 (probability is a nonnegative measure)
Axiom II: P (Ω) = 1 (probability is a finite measure)
Axiom III: If A ∩B = ∅ then P (A ∪B) = P (A) + P (B) (additivity property)

Remark 2.1. The probability of an event is an attribute similar to physical mass. Axiom I states that the
probability (mass) is nonnegative, and Axiom II states that there is a fixed total amount of probability (mass),
namely 1 unit. Axiom III states that the total probability (mass) in two disjoint objects is the sum of the
individual probabilities (masses).

Below we list some properties developed from the axioms.

Corollary 2.1. 1. P (Ac) = 1− P (A).

2. P (A) ≤ 1.

3. P (∅) = 0.

4. P (A ∪B) = P (A) + P (B)− P (A ∩B) and P (A ∪B) ≤ P (A) + P (B).

5. If A ⊂ B, then P (A) ≤ P (B).

6. Let A1, A2, . . . , An be a finite collection of pairwise disjoint events. Then P (
⋃n

i=1 Ai) =
∑n

i=1 P (Ai).

Initial probability assignment. Once the sample space Ω is specified, an initial probability assignment
must be introduced to define the probabilities of events, subject to the axioms of probability. If Ω is discrete,
it is sufficient to assign probabilities to the elementary outcomes. If Ω is continuous, it is sufficient to specify
the probabilities of basic sets such as intervals on the real line or regions in the plane. The probabilities of
more complex events can then be derived from this initial assignment using the probability axioms and their
corollaries.

3 Conditional Probability and Independence of Events
Definition 3.1 (Conditional Probability). For two events A and B, the conditional probability P (A|B) of
event A given B (has occurred) is defined as

P (A|B) =
P (A ∩B)

P (B)
for P (B) > 0.

Computing P (A|B) can be interpreted as restricting the sample space to B. Within this reduced sample
space, the event A occurs if and only if the outcome ω lies in A ∩ B. Thus, the conditional probability
P (A|B)is obtained by renormalizing the probabilities of events relative to B, so that the total probability
within B equals 1.

Let B1, B2, . . . , Bn be mutually exclusive events whose union is the sample space Ω. The collection
{B1, B2, . . . , Bn} is called a partition of Ω. Any event A can then be expressed as the union of mutually
exclusive components:

A = A ∩ Ω = A ∩ (B1 ∪B2 ∪ · · · ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn).

Hence, by Corollary 2.1, we have

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·+ P (A ∩Bn).

This result may be rewritten as
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P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + · · ·+ P (A|Bn)P (Bn),

which is known as the Theorem of Total Probability. Consider now, assuming P (A) > 0,

P (Bj |A) =
P (A ∩Bj)

P (A)
.

Applying the Theorem of Total Probability to the denominator of this, we find that

P (Bj |A) =
P (A|Bj)P (Bj)∑n
i=1 P (A|Bj)P (Bj)

,

which is Bayes’ rule and is a basic result relating different conditional probabilities.
For example, the Monty Hall problem.

Independence of Events If the occurrence of an event B does not change the probability of another
event A, we say that A is independent of B. Namely, this means P (A|B) = P (A), P (B) > 0.

Definition 3.2 (Independence of Events). Two events A and B are independent if P (A∩B) = P (A)P (B).

Remark 3.1 (Independence v.s. Mutual Exclusiveness). If A∩B = ∅, then A and B are said to be mutually
exclusive. In general, if two events have nonzero probability and are mutually exclusive, then
they cannot be independent. Conversely, independence does not imply mutual exclusivity. In fact, if two
events A and B are both independent and mutually exclusive, then at least one of them must have probability
zero, since both A ∩B = ∅ and P (A ∩B) = P (A)P (B) = 0 hold.

Remark 3.2 (Mutually Independence v.s. Pairwise Independence). Three events A, B, and C are said
to be mutually independent if the probability of the intersection of any subset of these events equals the
product of the probabilities of the individual events. That is,

P (A∩B) = P (A)P (B), P (A∩C) = P (A)P (C), P (B∩C) = P (B)P (C), P (A∩B∩C) = P (A)P (B)P (C).

If only the first three conditions hold, the events are called pairwise independent. Importantly, pairwise
independence does not in general imply mutual independence.

Example 2 (Pairwise but not Mutual Independence). Consider two numbers x and y are selected at random
from the unit interval (i.e. [0, 1]) (i.e. the random experiment E4). Let the events A,B, and C be defined
as follows:

A =
{
y > 1

2

}
, B =

{
x < 1

2

}
,

C =
{
x < 1

2 , y < 1
2

}
∪
{
x > 1

2 , y > 1
2

}
.

It can be easily verified that any pair of these events is independent:

P (A ∩B]) = 1
4 = P (A)P (B),

P (A ∩ C) = 1
4 = P (A)P (C),

P (B ∩ C) = 1
4 = P (B)P (C).

However, the three events are not independent, since A ∩B ∩ C = ∅, so

P (A ∩B ∩ C) = P (∅) = 0 ̸= P (A)P (B)P (C) = 1
8 .
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4 Random Variables
Definition 4.1 (Random Variable). A random variable X is a function that assigns a real number, X(ω),to
each outcome ω in the sample space Ω of a random experiment.

Ω

ω

real
linex

X(ω) = x

ΩX

The sample space Ω is the domain of a random variable, and the set

ΩX = {X(ω) : ω ∈ Ω}

of all possible values taken by X is called the range (or support) of the random variable. Clearly, ΩX ⊆ R.
Throughout, we adopt the convention that capital letters (e.g., X, Y ) denote random variables, while
lowercase letters (e.g., x, y) denote particular values (i.e. realizations) of these random variables.

Remark 4.1. The mapping X : Ω → R that assigns a value to each outcome is fixed and deterministic. Thus,
the randomness observed in X is entirely induced by the randomness inherent in the underlying experiment.
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