
CST 3526 Stochastic Process Lecture 13 - 12/11/2025

Lecture 13: Gaussian Processes I
Lecturer: Ziqiao Wang

In this lecture, we begin our study of Gaussian processes. In fact, a solid understanding of multiple
(jointly) Gaussian random variables is the key to understanding Gaussian processes. Therefore, we will
mainly focus on how to characterize joint Gaussian random variables. Specifically, we will see how a Gaussian
distribution is completely described by its first two moments, and how the characteristic function can be
used to reveal and prove several important properties of Gaussian random variables.

1 Jointly Gaussian Random Variables
Recall that the PDF for the Gaussian random variable X is given by

fX(x) =
1√
2π σ

e−
(x−m)2

2σ2 , −∞ < x < ∞.

The CDF of the Gaussian random variable is given by

P [X ≤ x] =
1√
2π σ

∫ x

−∞
e−

(x′−m)2

2σ2 dx′.

Theorem 1.1 (Central Limit Theorem (CLT)). Suppose X1, X2, X3, . . . is a sequence of i.i.d. random
variables with E[Xi] = µ and Var[Xi] = σ2 < ∞. Let X̄n =

∑n
i=1 Xi. Then, as n → ∞, the random

variables √
n (X̄n − µ)

converge in distribution to a normal random variable N (0, σ2):

√
n (X̄n − µ)

d−→ N (0, σ2).

Remark 1.1. The amazing part about the central limit theorem is that the summands Xi can have any dis-
tribution as long as they have a finite mean and finite variance. This gives the result its wide applicability.

The random variables X1, X2, . . . , Xn are said to be jointly Gaussian if their joint PDF is given by

fX(x) ≜ fX1,X2,...,Xn
(x1, . . . , xn) =

exp
{
− 1

2 (x−m)TK−1(x−m)
}

(2π)n/2|K|1/2
, (1)

where x and m are column vectors defined by

x =


x1

x2

...
xn

 , m =


m1

m2

...
mn

 =


E[X1]
E[X2]

...
E[Xn]

 ,

and K is the covariance matrix defined by

K =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xn)
...

...
. . .

...
Cov(Xn, X1) Cov(Xn, X2) · · · Var(Xn)

 . (2)
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The (·)T in Eq. (2) denotes the transpose of a matrix or vector. Note that the covariance matrix is
symmetric since Cov(Xi, Xj) = Cov(Xj , Xi).

Eq. (1) shows that the PDF of jointly Gaussian random variables is completely specified by
the individual means and variances and the pairwise covariances. It can be shown using the joint
characteristic function that all the marginal PDF’s associated with Eq. (1) are also Gaussian and that these
too are completely specified by the same set of means, variances and covariances.

Remark 1.2. In general, the independence and uncorrelatedness of two random variables are different
concepts. When second-order moments exist, independence implies uncorrelatedness, but the converse is not
necessarily true. A similar conclusion holds for random vectors. Since the statistical properties of jointly
Gaussian random vectors are completely determined by their second-order moments, they exhibit a special
relationship between independence and uncorrelatedness.

Example 1. Derive the PDF of two-dimensional Gaussian (X,Y ). The covariance matrix for the two-
dimensional case is given by

K =

[
σ2
1 ρX,Y σ1σ2

ρX,Y σ1σ2 σ2
2

]
,

where we have used the fact that Cov(X,Y ) = ρX,Y σ1σ2. The determinant of K is σ2
1σ

2
2(1 − ρ2X,Y ). The

inverse of the covariance matrix is also a real symmetric matrix:

K−1 =
1

σ2
1σ

2
2(1− ρ2X,Y )

[
σ2
2 −ρX,Y σ1σ2

−ρX,Y σ1σ2 σ2
1

]
.

The term in the exponent is therefore

1

σ2
1σ

2
2(1− ρ2X,Y )

[x−m1, y −m2]

[
σ2
2 −ρX,Y σ1σ2

−ρX,Y σ1σ2 σ2
1

] [
x−m1

y −m2

]
=

1

σ2
1σ

2
2(1− ρ2X,Y )

[x−m1, y −m2]

[
σ2
2(x−m1)− ρX,Y σ1σ2(y −m2)

−ρX,Y σ1σ2(x−m1) + σ2
1(y −m2)

]

=

(
x−m1

σ1

)2
− 2ρX,Y

(
x−m1

σ1

)(
y−m2

σ2

)
+
(

y−m2

σ2

)2
1− ρ2X,Y

.

Thus, the random variables X and Y are said to be jointly Gaussian if their joint PDF has the form

fX,Y (x, y) =

exp

{
− 1

2(1− ρ2X,Y )

[(
x−m1

σ1

)2

− 2ρX,Y

(
x−m1

σ1

)(
y −m2

σ2

)
+

(
y −m2

σ2

)2
]}

2πσ1σ2

√
1− ρ2X,Y

, (3)

for −∞ < x < ∞ and −∞ < y < ∞.
The PDF is centered at the point (m1,m2), and it has a bell shape that depends on the values of σ1, σ2,

and ρX,Y . As shown in the figure below, the PDF is constant for values x and y for which the argument of
the exponent is constant:[(

x−m1

σ1

)2

− 2ρX,Y

(
x−m1

σ1

)(
y −m2

σ2

)
+

(
y −m2

σ2

)2
]
= constant. (4)
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Regarding the orientation of the elliptical contours for various values of σ1, σ2, and ρX,Y . When ρX,Y = 0,
that is, when X and Y are independent, the equal-pdf contour is an ellipse with principal axes aligned with
the x- and y-axes. When ρX,Y ̸= 0, the major axis of the ellipse is oriented along the angle

θ =
1

2
arctan

(
2ρX,Y σ1σ2

σ2
1 − σ2

2

)
. (5)

Note that the angle is 45◦ when the variances are equal.

x

y

i) σx = σy, ρ = 0

Circular (isotropic)

x

y

ii) σx ̸= σy, ρ = 0

Axis-aligned Ellipse

x

y

iii) σx ̸= σy, ρ ̸= 0

Rotated ellipse

Example 2 (Rotation of Jointly Gaussian Random Variables). The ellipse corresponding to an arbitrary
two-dimensional Gaussian vector forms an angle

θ =
1

2
arctan

(
2ρσ1σ2

σ2
1 − σ2

2

)
relative to the x-axis. Suppose we define a new coordinate system by using the following rotation matrix:[

V
W

]
=

[
cos θ sin θ
− sin θ cos θ

] [
X
Y

]
.

To show that the new random variables are independent, it suffices to show that they have covariance

3



zero:

Cov(V,W ) =E[(V − E[V ])(W − E[W ])]

=E
[(
(X −m1) cos θ + (Y −m2) sin θ

)(
−(X −m1) sin θ + (Y −m2) cos θ

)]
=− σ2

1 sin θ cos θ +Cov(X,Y ) cos2 θ − Cov(X,Y ) sin2 θ + σ2
2 sin θ cos θ

=
(σ2

2 − σ2
1) sin 2θ + 2Cov(X,Y ) cos 2θ

2

=
cos 2θ

[
(σ2

2 − σ2
1) tan 2θ + 2Cov(X,Y )

]
2

.

If we let the angle of rotation θ be such that

tan 2θ =
2Cov(X,Y )

σ2
1 − σ2

2

,

then the covariance of V and W is zero as required.

Theorem 1.2. Multiple jointly Gaussian real random variables are independent if and only if the covariance
matrix of the random variables is diagonal.

Proof. Suppose X1, X2, . . . , Xn are jointly Gaussian random variables with

Cov(Xi, Xj) = 0 for i ̸= j.

Show that X1, X2, . . . , Xn are independent random variables.
From Eq. (2), we see that the covariance matrix is a diagonal matrix:

K = diag[Var(Xi)] = diag[σ2
i ].

Therefore, K−1 = diag
[

1
σ2
i

]
, and (x−m)TK−1(x−m) =

∑n
i=1

(
xi−mi

σi

)2
.

From Eq. (1), we have

fX(x) =
exp
{
− 1

2

∑n
i=1 [(xi −mi)/σi]

2
}

(2π)n/2 |K|1/2
=

n∏
i=1

exp
{
− 1

2 [(xi −mi)/σi]
2
}

√
2πσ2

i

=

n∏
i=1

fXi(xi).

Thus, X1, X2, . . . , Xn are independent Gaussian random variables.

Example 3 (Decorrelation). Let X =

(
X1

X2

)
be a jointly Gaussian random vector. Define the linear

transformation Y =

(
Y1

Y2

)
=

(
I A
0 I

)(
X1

X2

)
.

We want Y1 and Y2 to be uncorrelated, i.e.,

E[(Y1 − EY1)(Y2 − EY2)
T ] = 0.

This leads to
0 = Σ12 +AΣ22 ⇒ A = −Σ12Σ

−1
22 .

Then the covariance matrix of Y becomes

E[(Y − EY)(Y − EY)T ] =

(
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

)
.
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2 Characteristic Function
The characteristic function of a random variable X is defined by

ΦX(ω) =E
[
ejωX

]
=

∫ ∞

−∞
fX(x) ejωx dx, (6)

where j =
√
−1 is the imaginary unit number. The two expressions on the RHS motivate two interpretations

of the characteristic function. In the first expression, ΦX(ω) can be viewed as the expected value of a function
of X, ejωX , in which the parameter ω is left unspecified. In the second expression, ΦX(ω) is simply the Fourier
transform of the PDF fX(x) (with a reversal in the sign of the exponent). Both of these interpretations
prove useful in different contexts.

If we view ΦX(ω) as a Fourier transform, then we have from the Fourier transform inversion formula that
the PDF of X is given by

fX(x) =
1

2π

∫ ∞

−∞
ΦX(ω) e−jωx dω. (7)

It then follows that every PDF and its characteristic function form a unique Fourier transform
pair.

Since fX(x) and ΦX(ω) form a transform pair, we would expect to be able to obtain the moments of X
from ΦX(ω). The moment theorem states that the moments of X are given by

E[Xn] =
1

jn
dn

dωn
ΦX(ω)

∣∣∣∣
ω=0

. (8)

To show this, first expand ejωx in a power series in the definition of ΦX(ω):

ΦX(ω) =

∫ ∞

−∞
fX(x)

{
1 + jωx+

(jωx)2

2!
+ · · ·

}
dx. (9)

Assuming that all the moments of X are finite and that the series can be integrated term by term, we
obtain

ΦX(ω) = 1 + jωE[X] +
(jω)2E[X2]

2!
+ · · ·+ (jω)nE[Xn]

n!
+ · · · . (10)

If we differentiate the above expression once and evaluate the result at ω = 0 we obtain

d

dω
ΦX(ω)

∣∣∣∣
ω=0

= j E[X]. (11)

If we differentiate n times and evaluate at ω = 0, we finally obtain

dn

dωn
ΦX(ω)

∣∣∣∣
ω=0

= jnE[Xn], (12)

which yields Eq. (8).

Characteristic Function of Gaussian Random Variables Let X ∼ N (m,σ2). By definition, the
characteristic function is

ΦX(ω) = E
[
ejωX

]
=

∫ ∞

−∞
ejωxfX(x) dx,

where

fX(x) =
1√
2πσ

exp

(
− (x−m)2

2σ2

)
.
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Substituting and letting y = x−m, we obtain

ΦX(ω) = ejωm

∫ ∞

−∞

1√
2πσ

exp

(
− y2

2σ2
+ jωy

)
dy.

Completing the square,

− y2

2σ2
+ jωy = − (y − jωσ2)2

2σ2
− 1

2
σ2ω2.

Thus,

ΦX(ω) = ejωme−
1
2σ

2ω2

∫ ∞

−∞

1√
2πσ

exp

(
− (y − jωσ2)2

2σ2

)
dy.

The integral is the integral of a (complex-shifted) Gaussian density. Its value is 1: it is the same as the
standard Gaussian integral, just translated by a constant (here a complex shift, but the integral over R is
unchanged). We obtain

ΦX(ω) = exp

(
jmω − 1

2
σ2ω2

)
.

The joint characteristic function is very useful in developing the properties of jointly Gaussian random
variables. We now show that the joint characteristic function of n jointly Gaussian random vari-
ables X1, X2, . . . , Xn is given by

ΦX1,X2,...,Xn
(ω1, ω2, . . . , ωn) = exp

(
j

n∑
i=1

ωimi −
1

2

n∑
i=1

n∑
k=1

ωiωk Cov(Xi, Xk)

)
, (13)

which can be written more compactly as follows:

ΦX(ω) ≜ ΦX1,X2,...,Xn
(ω1, ω2, . . . , ωn) = exp

(
jωTm− 1

2
ωTKω

)
, (14)

where m is the vector of means and K is the covariance matrix defined in Eq. (2).

3 Properties of Multiple Gaussian Random Variables
Multivariate Gaussian distributions enjoy many nice properties that other distributions do not possess.
Understanding these properties is very important for the study of Gaussian processes.

3.1 Marginal Distributions
Theorem 3.1. If X = (X1, X2, . . . , Xn)

T follows an n-dimensional Gaussian distribution, then any subvec-
tor

X̃ = (Xk1
, Xk2

, . . . , Xkm
)T , m < n

also follows an m-dimensional Gaussian distribution.

In other words, the marginal distributions of a Gaussian distribution are still Gaussian. This
property can be verified using the characteristic function.

Proof. In fact, the characteristic function of (Xk1
, Xk2

, . . . , Xkm
) satisfies

ΦX̃(ω(k)) = ΦX̃(ωk1
, ωk2

, . . . , ωkm
) = E exp

(
j(ωk1

Xk1
+ · · ·+ ωkm

Xkm
)
)
= ΦX(ω̃),

where ΦX(ω) is the characteristic function of X,

ω(k) = (ωk1 , ωk2 , . . . , ωkm)T ,
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and
ω̃ = (. . . , 0, ωk1 , 0, . . . , 0, ωk2 , 0, . . . , 0, ωkm , 0, . . . )T .

Note that
ω̃T = ωT

(k)A,

where A ∈ Rm×n with elements

Apq =


1, p = i, q = ki,

0, p = i, q ̸= ki,

0, p ̸= i.

Since X follows a multivariate Gaussian distribution, its characteristic function is

ΦX(ω) = exp
(
jωTµ− 1

2ω
TΣXω

)
.

Therefore,

ΦX̃(ω(k)) = ΦX(ω̃) = ΦX(ω(k)A) = exp
(
jωT

(k)Aµ− 1
2ω

T
(k)AΣXATω(k)

)
.

Thus, X̃ follows a Gaussian distribution with mean Aµ and covariance matrix AΣXAT .

Remark 3.1. It should be pointed out that the converse is not true: even if each component of a random
vector follows a univariate Gaussian distribution, this does not guarantee that the vector follows a joint
multivariate Gaussian distribution. That is, Gaussian marginals do not imply a joint Gaussian distribution.
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