CST 3526 Stochastic Process Lecture 13 - 12/11/2025

Lecture 13: Gaussian Processes |

Lecturer: Zigiao Wang

In this lecture, we begin our study of Gaussian processes. In fact, a solid understanding of multiple
(jointly) Gaussian random variables is the key to understanding Gaussian processes. Therefore, we will
mainly focus on how to characterize joint Gaussian random variables. Specifically, we will see how a Gaussian
distribution is completely described by its first two moments, and how the characteristic function can be
used to reveal and prove several important properties of Gaussian random variables.

1 Jointly Gaussian Random Variables

Recall that the PDF for the Gaussian random variable X is given by
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The CDF of the Gaussian random variable is given by
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Theorem 1.1 (Central Limit Theorem (CLT)). Suppose X1, X, X3,... is a sequence of i.i.d. random
variables with E[X;] = p and Var[X;] = 02 < co. Let X, = Y.;, X;. Then, as n — oo, the random

variables ~
\/ﬁ (Xn - N)
converge in distribution to a normal random variable N'(0,02):
Vi (Xn —p) S N(0,02).

Remark 1.1. The amazing part about the central limit theorem is that the summands X; can have any dis-
tribution as long as they have a finite mean and finite variance. This gives the result its wide applicability.

The random variables X7, Xo,..., X, are said to be jointly Gaussian if their joint PDF is given by
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where x and m are column vectors defined by

X1 mi E[Xl]
T2 mo E[XQ]

X = . ) m = . - . )
Tn Mn E[X,]

and K is the covariance matrix defined by

Var(X7) Cov(X1,X2) -+ Cov(X1,Xn)
Cov(Xs, X1) Var(X5) - Cov(Xao, X,) @
= : : . . : 2
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The ()T in Eq. (2) denotes the transpose of a matrix or vector. Note that the covariance matrix is
symmetric since Cov(X;, X;) = Cov(X}, X;).

Eq. (1) shows that the PDF of jointly Gaussian random variables is completely specified by
the individual means and variances and the pairwise covariances. It can be shown using the joint
characteristic function that all the marginal PDF’s associated with Eq. (1) are also Gaussian and that these
too are completely specified by the same set of means, variances and covariances.

Remark 1.2. In general, the independence and uncorrelatedness of two random wvariables are different
concepts. When second-order moments exist, independence implies uncorrelatedness, but the converse is not
necessarily true. A similar conclusion holds for random wvectors. Since the statistical properties of jointly
Gaussian random vectors are completely determined by their second-order moments, they exhibit a special
relationship between independence and uncorrelatedness.

Example 1. Derive the PDF of two-dimensional Gaussian (X,Y). The covariance matrix for the two-
dimensional case is given by
K— [ of pX,Ygla'ﬂ ,
PX, Y0102 03

where we have used the fact that Cov(X,Y) = px yo10. The determinant of K is 0705(1 — p% y). The
inverse of the covariance matrix is also a real symmetric matrix:
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The term in the exponent is therefore
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Thus, the random variables X and Y are said to be jointly Gaussian if their joint PDF has the form
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for —oo <z < oo and —o0 < y < 0.

The PDF is centered at the point (mi,m2), and it has a bell shape that depends on the values of o1, o9,
and px y. As shown in the figure below, the PDF is constant for values  and y for which the argument of
the exponent is constant:
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Regarding the orientation of the elliptical contours for various values of o1, 02, and px y. When px y =0,
that is, when X and Y are independent, the equal-pdf contour is an ellipse with principal axes aligned with
the z- and y-axes. When px y # 0, the major axis of the ellipse is oriented along the angle
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Note that the angle is 45° when the variances are equal.
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Example 2 (Rotation of Jointly Gaussian Random Variables). The ellipse corresponding to an arbitrary
two-dimensional Gaussian vector forms an angle
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relative to the z-axis. Suppose we define a new coordinate system by using the following rotation matrix:

V| | cosf sinf| |X
W\ |—sinf cos@| |Y |’

To show that the new random variables are independent, it suffices to show that they have covariance
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If we let the angle of rotation 6 be such that
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then the covariance of V' and W is zero as required.

Theorem 1.2. Multiple jointly Gaussian real random variables are independent if and only if the covariance
matriz of the random variables is diagonal.

Proof. Suppose X1, Xo,..., X, are jointly Gaussian random variables with
COV(Xi,Xj) =0 fori 7é j

Show that X7, Xo,..., X, are independent random variables.
From Eq. (2), we see that the covariance matrix is a diagonal matrix:

K = diag[Var(X;)] = diag[o?].

Therefore, K~ = dlag[ 2], and (x —m)TK 1 (x —m) =" (%)2
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From Eq. (1), we have
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Thus, X1, Xo,..., X, are independent Gaussian random variables. O
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We want Y7 and Y5> to be uncorrelated, i.e.,

Example 3 (Decorrelation). Let X = <X1> be a jointly Gaussian random vector. Define the linear

E[(Y; — EY;)(Ys — EY3)] = 0.
This leads to
0=23%12+ AXos = A= —21222_21.
Then the covariance matrix of Y becomes
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2 Characteristic Function

The characteristic function of a random variable X is defined by
Dy (w) =FE [eWX] = / fx(x) e de, (6)
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where j = /—1 is the imaginary unit number. The two expressions on the RHS motivate two interpretations
of the characteristic function. In the first expression, ® x (w) can be viewed as the expected value of a function
of X, e/ in which the parameter w is left unspecified. In the second expression, ®x (w) is simply the Fourier
transform of the PDF fx(z) (with a reversal in the sign of the exponent). Both of these interpretations
prove useful in different contexts.
If we view ®x (w) as a Fourier transform, then we have from the Fourier transform inversion formula that
the PDF of X is given by -
Felz) = — / By (w) 747 duo. (7)
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It then follows that every PDF and its characteristic function form a unique Fourier transform
pair.
Since fx(x) and ®x(w) form a transform pair, we would expect to be able to obtain the moments of X
from ®x(w). The moment theorem states that the moments of X are given by
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To show this, first expand e/“? in a power series in the definition of ®x (w):

By (w) = /_o; Fx(2) {1 + jwz + U‘;?Z +} dz. 9)

Assuming that all the moments of X are finite and that the series can be integrated term by term, we
obtain

@X(w):1+wa[X}+W+---+W+ (10)
If we differentiate the above expression once and evaluate the result at w = 0 we obtain
Lax)| =jEX] (1)
dw we0
If we differentiate n times and evaluate at w = 0, we finally obtain
dar > o n
)| =X (12

which yields Eq. (8).

Characteristic Function of Gaussian Random Variables Let X ~ AN(m,0?). By definition, the

characteristic function is -

Dy (w) = E[e/¥] :/ eI fx () dz,
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where




Substituting and letting y = = — m, we obtain

, Rl | 2 ,
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Completing the square,
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The integral is the integral of a (complex-shifted) Gaussian density. Its value is 1: it is the same as the
standard Gaussian integral, just translated by a constant (here a complex shift, but the integral over R is
unchanged). We obtain

1
D x(w) =exp (jmw — 202w2> .

The joint characteristic function is very useful in developing the properties of jointly Gaussian random
variables. We now show that the joint characteristic function of n jointly Gaussian random vari-
ables X1, X5,..., X, is given by
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which can be written more compactly as follows:
1
Px(w) 2 Px, x,...x, (W1,W2,...,w,) = exp (ijm - 2wTKw) , (14)

where m is the vector of means and K is the covariance matrix defined in Eq. (2).

3 Properties of Multiple Gaussian Random Variables

Multivariate Gaussian distributions enjoy many nice properties that other distributions do not possess.
Understanding these properties is very important for the study of Gaussian processes.

3.1 DMarginal Distributions

Theorem 3.1. If X = (X1, Xa,..., X,,)T follows an n-dimensional Gaussian distribution, then any subvec-
tor

X:(Xk1an27"'7Xk )Ta m<n

m

also follows an m-dimensional Gaussian distribution.

In other words, the marginal distributions of a Gaussian distribution are still Gaussian. This
property can be verified using the characteristic function.

Proof. In fact, the characteristic function of (X, , Xk,,..., Xk, ) satisfies

(I)X(w(k)) = @X(wkl,wkz, c. ,wkm) = [Eexp (j(wlekl + -4 wkakm)) = (I)X((I)),
where ®x (w) is the characteristic function of X,
)T
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and
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..,O,wkl,O,...,O,wk2,0,...,O,wkm,(),...

Note that
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where A € R™*"™ with elements
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Since X follows a multivariate Gaussian distribution, its characteristic function is
Px (w) = exp(iju - %wTExw).
Therefore,
Pz (W) = Px (@) = Px(wr)A) = exp(jw(Tk)Au — %w(j,;)AEXATw(k)).
Thus, X follows a Gaussian distribution with mean Ap and covariance matrix AXx A7 O

Remark 3.1. [t should be pointed out that the converse is not true: even if each component of a random
vector follows a univariate Gaussian distribution, this does nmot guarantee that the vector follows a joint
multivariate Gaussian distribution. That is, Gaussian marginals do not imply a joint Gaussian distribution.



