CST 3526 Stochastic Process Lecture 2 - 09/25/2025

Lecture 2: Review of Probability Theory II
Lecturer: Zigiao Wang

In this lecture!, we will introduce several ways of specifying a discrete or continuous random variable
or distribution, including the cumulative distribution function, probability mass function, and probability
density function. We then cover functions of a random variable, the expected value and variance. Next, we
extend these concepts to pairs of random variables, discussing independence, correlation and covariance, as
well as conditional probability and conditional expectation.

1 CDF, PMF and PDF

All events of interest on the real line can be expressed as sets of the form {¢: X({) <b}, beR.

Definition 1.1 (Cumulative distribution function). The cumulative distribution function (CDF) of a random
variable X is defined as the probability of the event {X < z}:

Fx(z)=P(X <x) for — oo <z < 400.

Clearly, Fx(x) is a function of the variable x, since its value changes as x varies.
We are now ready to state the fundamental properties of the CDF. From the axioms of probability and
their corollaries, it follows that the CDF satisfies the following properties:

Fx(b) = lim Fx(b+h) = Fx(b*).

(vi) Pla < X < b = Fx(b) — Fx(a).

(vii) P[X = b] = Fx(b) — Fx(b™).

(vii) P[X > 2] =1 — Fx().

Remark 1.1. If the CDF is continuous at a point b, then P(X = b) = 0.

We may loosely say that a R.V. X is discrete if it takes values from a countable set, i.e. Qx = {21, z2,...}.
A more formal definition is given below.

Definition 1.2 (Discrete R.V. and PMF). A discrete random variable X is defined as a random variable
whose CDF is a right-continuous, staircase function of z, with jumps at a countable set of points {z1, 23, ... }.
The probability mass function (PMF) of a discrete random variable X is defined as:

px(zx) & P(X = x3) for x € Qx.
1 Reading: Chapter 4-5 of Leon-Garcia.




Notably, the CDF of a discrete random variable is given by the cumulative probability of all outcomes
less than z, and can be expressed as a weighted sum of unit step functions:

Fx(x) = pr(mk)u(x — TK),
k

where

{ 0, forax <0,
u(z) =

1, forz >0,
is the unit step function.

Definition 1.3 (Continuous R.V. and PDF). If Fx(z) is continuous everywhere on R, then we say the
random variable is a continuous random variable. The probability density function (PDF) of a continuous
random variable X is defined as, for all x € R,

d d
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0, otherwise.

Definition 1.4 (Mixed Typy R.V.). A random variable which is neither continuous nor discrete is termed
a random variable of mixed type.

A mixed-type random variable is one whose CDF exhibits jumps at a countable set of points {z1, 22,...}
while also increasing continuously over at least one interval of x values. The CDF of such a random variable
can be expressed in the following form:

Fx(z) = pFi(z) + (1 = p)Fa(2),

where p € (0,1), and Fy(z) is the CDF of a discrete R.V. and Fy(x) is the CDF of a continuous R.V.
fx (@) fx (@)
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(a) Pz <X <zx+dx]= fx(z)dx (b) P[a<X<b}:/be(m)dx

PDF. The PDF represents the “density” of probability at a point x in the following sense: for a sufficiently
small b > 0, the probability that X falls within a small interval around x, namely [z, z + h], is approximately
proportional to the value of the PDF at z.

p@<xgx+m:py@+m_pﬂm:Fk@*Q*F““h:kum.

The PDF satisfies the following properties:

(i) fx(x)>0.
(i) Pla<X <b)= [ fx(z)dz.



(i) Fx(z) = [*_ fx(t)dt.

(iv) 1= [T fx(t)dt.

The PDF completely specifies the behavior of continuous random variables.

2 Functions of a Random Variable

Let X be a R.V. and g(x) a real-valued function defined on R. Define Y = g(X), then Y is itself a R.V., and
the probabilities associated with the possible values of ¥ are determined by the mapping g(x).

The CDF of Y is defined as the probability of the event {Y < y}. In principle, it can be obtained by
evaluating the probability of the equivalent event {g(X) < y}.

Example 1 (A Linear Function). Let the random variable Y be defined by
Y =aX + b,

where a is a nonzero constant. Suppose that X has CDF Fx(x). Find Fy (y).
The event {Y < y} occurs when A = {aX +b < y} occurs. If a > 0, then A = {X < (y—1b)/a}, and thus

Fy(y):P<X§y_b> :Fx<y_b), a>0.

a a
On the other hand, if a < 0, then A = {X > (y — b)/a}, and
—b —-b
Fy(y):P<X>y) :1—Fx<y>, a < 0.
a a
We can obtain the PDF of Y by differentiating with respect to y. Using the chain rule,
dF _dF du
dy  du dy’

where u is the argument of F. In this case, u = (y — b)/a. Hence, for a > 0,

a

fY(y)chlfx(y_b>7 a>0,

and for a < 0,

fY(y)Z_le<y_b>, a<O0.

a

foy) = 1fx<y_b>~ M)

Example 2 (A Linear Function of a Gaussian Random Variable). Let X be a R.V. with a Gaussian PDF
with mean m and standard deviation o:

1
fx(x) = e*(z*m)2/2"2, —00 < x < 00. (2)

V2ro
Let Y = aX + b, then find the PDF of Y. Substitution of Eq. (2) into Eq. (1) yields

L —(y—b-am)?/2(ac)*

fy(y) = m e

Note that Y also has a Gaussian distribution with mean b+ am and standard deviation |a|o. Therefore,
a linear function of a Gaussian R.V. is also a Gaussian R.V..



3 Expectation and Variance

Definition 3.1 (Expectation). The expected value or mean of a random variable X is defined by

E[X] 2 /HO tfx (t)dt

— 00

Expectation is a linear operator:
(1) Elg(X) +r(X)] = E[g(X)] + E [A(X)].
(ii) E[aX]=aE[X].
(iii) E[X +¢ = E[X] +c.
Definition 3.2 (Variance). The variance of the random variable X is defined by
Var[X] £ Ex [(X — E[X])?] = E [x?] - E?[X].
The standard deviation of the R.V. X is defined by
Std[X] 2 (Var[X])"/?.
(i) Var[X + ] = Var[X].
(ii) Var[cX] = ¢*Var[X].

Definition 3.3 (Moments). The nth moment of the R.V. X is defined by

+oo
E[X"] £ / " fx(z)dz.

— 0o

4 Two Probability Inequalities

Theorem 4.1 (Markov’s Inequality). If X is a nonnegative R.V. with mean E [X], then for any a > 0

E[X]

P(X >a) <
(Xza) < ="

Theorem 4.2 (Chebyshev’s Inequality). Let X be a R.V. with variance 0% and expected value m, then for
any a > 0, we have

0.2

P(\X—m|2a)§¥_

5 Pairs of R.V.’s

Consider a random experiment with sample space 2 and event class F. We now define a function that
assigns to each outcome w € Q an ordered pair of real numbers (X (w), Y (w)). In other words, we are dealing
with a vector-valued R.V. that maps ) into the real plane R2.

Suppose (X,Y) takes values from a countable set Qxy = {(zj,yx) : 5 =1,2,...;k = 1,2,...}. The
joint probability mass function of (X,Y) specifies the probability of the event X = z,,Y =y for each
pair (z,y) € Qxy.

Pyy(z,y) = P{X =2} n{Y =y}] 2 P[X =2,V =]

for z,y € R2.



The joint PMF of (X,Y") characterizes the joint behavior of X and Y. We are also also interested in the
probabilities of events involving each R.V. individually. These can be obtained from the marginal PMFs:

px(z;) = P(X =z;) = P(X = z;,Y = Anything) = ZP =z;,Y = y),
k=1

similarly,

o0

py(yr) = P(Y = yx) = P(X = Anything, Y = yj) ZP =z, Y =yp),

The joint cumulative distribution function of X and Y is defined as the probability of the event
{(X <z }n{Y <y }:
Fxy(r1,51) = P(X <z1,Y <y1).

The joint CDF satisfies the following properties.

(i) Monotonicity. The joint cdf is a nondecreasing function of = and y:

Fxy(z1,y1) < Fxy(x2,y2) if 21 <xpand y1 < ypo. (3)
(i) Boundary values.

Fx y(z1,—00) =0, Fx y(—o0,y1) =0, Fx y(00,00) = 1. 4)

(iii) Marginals (remove one constraint).

Fx(z1) = Fxy(z1,00) and Fy(y1) = Fx,y(00,91). (5)
(iv) Right—continuity in each coordinate (“north” and “east”).

hm Fxy(xz,y) = Fxy(a,y) and hjil+ Fxy(z,y) = Fxy(z,b). (6)
Y

z—at
(v) Probability of a rectangle.

Pz < X <9, 1 <Y <o) = Fxy(x2,12) — Fxy(v2, 1) — Fxy(®1,92) + Fxy(x1,y1).  (7)

We say that the R.V.’s X and Y are jointly continuous if the probabilities of events involving (X,Y") can

be expressed as an integral of a PDF. Specifically, there exists a nonnegative function fx y (z,y) called the
joint PDF, defined on the real plane such that for every event B, a subset of the plane,

P((X,Y) e B) 2/ /fx,y(x’,y’)dm’dy’.
B
When B is the entire plane, the integral must equal one:

/ / fxy (@, y)dz'dy’ = 1.

The joint CDF can be obtained in terms of the joint PDF of jointly continuous R.V.’s by integrating over
the semi-infinite rectangle defined by (x,y):

Ty
Fxy(z,y) = / / Ixy (@, y)dz'dy'.



It then follows that if X and Y are jointly continuous R.V.’s, then the PDF can be obtained from the
CDF by differentiation:

8FX Y (1‘ y)
A AN ) )
fX,Y(xay)_ axay .
The probability of a rectangular region is obtained by letting B = {(x,y) : a1 < z < by,a2 <y < ba}:
br by
P(a1 <X <bj,aa <Y < bg) = / fX’y(x/,y/)dx’dy'.
al az

The marginal PDF’s fx(x) and fy (y) are obtained by taking the derivative of the corresponding marginal
CDF’s, Fx(z) = Fx,y(x,00) and Fy (y) = Fx,y(c0,y). Thus,

Fxla) = /_ oy (o) dy
and

fr(y) = / Y b @y

6 Independence, Conditional Probability and Conditional Expec-
tation

Discrete R.V.’s X and Y are independent if and only if the joint PMF is equal to the product
of the marginal PMF’s

pxy (@i, yr) = P(X = 2;,Y = yp) = P(X = 2;) P(Y = yx) = px (2;)py ()

In general, two R.V.’s X and Y are independent if and only if their joint CDF equals the
product of their marginal CDFs.

Fxy(z,y) = Fx(z)Fy(y) for Va,y

Similarly, if X and Y are jointly continuous, then they are independent if and only if their
joint PDF equals the product of their marginal PDFs:

fxv(zy) = fx@)fy(y) forVa,y

Remark 6.1. If X and Y are independent R.V.’s, then the R.V.’s defined by any pair of functions g(X)
and h(Y) are also independent.

The joint moments of two R.V. X and Y summarize information about their joint behavior. The jkth
joint moment of X and Y is defined by

o0
// zyF fxy(z,y)dedy, X,Y jointly continuous,
—o0

E[X/Y*] = _
[ ] Z Z xzjy/f px, v (Zi, Yn), X, Y discrete.

It is customary to refer to the j = 1,k = 1 moment, E[XY], as the correlation of X and Y. When
E[XY] =0, we say that X and Y are orthogonal.
The jkth central moment of X and Y is defined as the joint moment of the centered R.V.’s X — E [X]
and Y — E[Y],
i k
E (X ~E[X])) (Y ~E[Y])].



The covariance of X and Y is defined as the j = k = 1 central moment:
Cov(X,Y)2E[(X —E[X))(Y —E[Y]) =E[XY] -E[X]E[Y].
Note that Cov(X,Y) = E [XY] if either of the random variables has mean zero.

Example 3. Let X and Y be independent random variables. Find their covariance.

Cov(X,Y) = E[(X —EX)(Y - E[Y])] =E[X —-EX]|E[Y —E[Y]] =0,

where the second equality follows from the fact that X and Y are independent, and the third equality follows

from
E[X — E[X]] = E[X] - E[X] = 0.

Therefore pairs of independent random variables have covariance zero.

Multiplying either X or Y by a large constant increases the covariance, so we normalize it in order to
measure correlation on an absolute scale.

Definition 6.1 (Correlation Coefficient). The correlation coefficient of X and Y is defined by

Cov(X,Y) E[XY]-E[X]|E[Y]
XY = = )
OxXO0Oy Ooxoy

where ox = y/Var(X) and oy = y/Var(Y) are the standard deviations of X and Y, respectively.
The correlation coefficient is a number that is at most 1 in magnitude:

1 < pxy < 1. (8)

To establish the inequalities, we start from the fact that the expected square of a R.V. is nonnegative,
which yields the following inequality:

. <E{<X—E[X] N Y—E[Y])z}

ox oy
=1+ 2pX7y + 1
:2(1 + pX7y).

The last equation implies Eq. (8).

The extreme values of px y are achieved when X and Y are related linearly, Y = aX + b; px,y = 1 if
a>0ande7y:—1 if a < 0.

R.V.’s X and Y are said to be uncorrelated if px y = 0. If X and Y are independent, then Cov(X,Y) =
0, so px,y = 0. Thus if X and Y are independent, then X and Y are uncorrelated. The following example
shows that it is possible for X and Y to be uncorrelated but not independent.

Example 4. Let © be uniformly distributed in the interval (0, 27). Let
X =cos© and Y =sin©.

The point (X,Y") then corresponds to the point on the unit circle specified by the angle ©. The marginal
PDF’s of X and Y are arcsine PDF’s; which are nonzero in the interval (—1,1). The product of the marginals
is nonzero in the square defined by —1 <z <1 and —1 <y <1, so if X and Y were independent the point
(X,Y) would assume all values in this square. This is not the case, so X and Y are dependent.

We now show that X and Y are uncorrelated:

™

2m
E[XY] = E[sin©cos O] = QL/ sin ¢ cos ¢ d¢
0



1 2T
:—/ sin 2¢ d¢ = 0.
47 0
Since E[X] = E[Y] = 0, then it implies that X and Y are uncorrelated.

Note that if X and Y are jointly Gaussian and pxy = 0 then X and Y are independent
random variables.

Definition 6.2 (Conditional PMF). For X and Y discrete random variables, the conditional PMF of Y
given X = z is defined by:

py(ylz) = P(Y =y[ X =1x) =

for « such that P(X =) > 0.

We define py (y | ) = 0 for « s.t. P(X = z) = 0. Note that py(y | ) is a function of y over the real
line, and that py (y | ) > 0 only for y in a discrete set {y1,y2,...}.

Definition 6.3 (Conditional CPF). Suppose Y is a continuous random variable and X is a discrete R.V.,
then the conditional CDF of Y given X = z, is defined as

P(Y <y, X =)
P(XZZL'k) ’

Fy(y|zk) = for P(X = xzy) > 0.

If X is a continuous R.V.; then the conditional CDF of Y given X = z is defined as
Fy(y|z)=1lm Fy(y |z <X <z +h).
h—0

Notice that
PY <y,z< X <x+h]
Plr<X<z+1h
JP B pxv (@ y) da dy
= f;+h fx(x') dz’
o fxy (@) dy b
- Fx(@)h

Fy(ylr< X <ax+h)=

As we let h approach zero,

[P fxy (@ y)dy 9)
fx(x)

Definition 6.4 (Conditional PDF). The conditional PDF of Y given X = zy, if the derivative exists, is

given by

Fy(y|z) =

Frly o) = diny(y | 20),

and the conditional PDF of Y given continuous X = z is then:

Frly|9) = S Fvly | ) = w (10)

Definition 6.5 (Conditional Expectation). The conditional expectation of Y given X = x is defined by

E[Y|x]=/°° ufy(y | 2)dy.

— 00



In the special case where X and Y are both discrete random variables we have:
E[Y | 2k = yipy(y; | 2x). (11)
Y;
Clearly, E[Y | z] is simply the center of mass associated with the conditional PDF or PMF.

Remark 6.2. The conditional expectation E[Y | x] can be viewed as defining a function of x: g(x) = E[Y | z].
It therefore makes sense to talk about the random variable g(X) = E[Y | X]. We can imagine that a random
experiment is performed and a value for X is obtained, say X = xg, and then the value g(xg) = E[Y | xo] is
produced. We are interested in E[g(X)] = E[E]Y | X]]. In particular, we have

E[Y] = E[E)Y | X], (12)

where the RHS is -
EEY | X] = / EY | 2lfx(z) dz, (13)
BEY | X]] = SB[ | xlpx (zx) (14)

If X andY are jointly continuous random variables. Then
BEY | X)) = [ BIY | dfx(o)do

- /_i /_nyY(y | 2) dy fx (z)dx

:/ y/ fxy(x,y) dedy
oo

= / yfv(y) dy
—EpY]
The above result also holds for the expected value of a function of Y :
E[r(Y)] = E[E[A(Y) | X]].
In particular, the kth moment of Y is given by

E[Y*] = E[E[Y* | X]].

7 Multiple R.V.’s

Random vector X = [X7,..., X,]

Definition 7.1 (Joint CDF). The joint CDF of Xi,..., X, is defined as the probability of an n-dimensional
semi-infinite rectangle associated with the point (z1,...,x,):

FX(X) = FX1,...,Xn(x17' .. ,l’n) = P(Xl S x, X2 S T2, «vny Xn S xn) .
Definition 7.2 (Joint PMF). The joint PMF of n discrete random variables is defined by

px(X) =S pxl’m’xn(l‘l,...,xn) :P(Xl =T, X2 = T2, ..., Xn:.’)Sn)



A family of conditional PMF"s is obtained from the joint PMF by conditioning on different subcollec-

tions of the random variables. For example, if px, . x, ,(%1,...,2Zp—1) > 0, then
_ PXLM,X"(%V--,%n)
px, (T |21, 2n1) = .
PXi,.. Xna (xh cee ,an_l)

Repeated applications yield the following very useful expression (chain rule):

PXq,.... Xn (xla v axn) =DPX, (l‘n | T1y--- amn—l)an71(zn—1 | Tiye-- ,l’n—Q) PXo ('1;2 | xl)le (Sﬁl)

Random variables X7, X5, ..., X,, are jointly continuous random variables if the probability of any
n-dimensional event A is given by an n-dimensional integral of a probability density function:

P(XEA):/ /~-~/le,m’X"(at’l,...,x;)dx'l-~-dx;“
xXEA

where fx, . x,(z1,...,2,) is the joint PDF.
The joint CDF of X is obtained from the joint PDF by integration:

1 Tn
Fx(x)=Fx,,.. x,(®1,...,Ty) :/ / Ixpx, (@, a) day - da),.
— 00 — 00

The joint PDF (if the derivative exists) is given by

61’7,

F e .
leazn Xl""an(xlv ,xn)

fx(x) & fxyox, (1,00, 20) = 5

The marginal PDF for a subset of the random variables is obtained by integrating the other variables
out. For example, the marginal pdf of X; is

oo o0
fx1<w1>:/ / ¥ x (@1, Tyt dey - et
—o0 —o0

As another example, the marginal PDF for Xy,..., X,,_1 is given by

o0
Ixaox, (s a1, a,) da,.
o0

le,...,Xn,l(xh s >$n71) = /

A family of conditional PDF’s is also associated with the joint pdf. For example, the PDF of X, given
the values of Xq,...,X,,_1is

le X (.Z‘l, A 7-7771)
an.'I/' "I"1~--$71 f— yereyiimy )
( n ‘ ) ybn ) le,-..,Xn_l(xl,...7I7L_1)
if fx,. .x, ,(x1,...,2p-1) > 0.
Repeated such applications yield an expression:
le ..... Xn(l.:l? R ,xn) = an(xn | Ty 71.7171)an,1($7171 | L1y »xn72) ce fXg(fL'Q | $1) le (xl)

Independence As shown in Table 1, independence means the joint distribution factorizes into the product
of the marginals.

10



Case Independence Condition

General (CDF) Fx,. .x,(@1,...,2n) = Fx,(z1) - Fx, (xn)

Discrete (PMF) Pxq,..., X (xlv cee 7xn) =Px, (xl) o PXx, (xn)

Continuous (PDF) | fx,.  x,(z1,...,2n) = fx,(x1) - fx, (zn)

Table 1: Equivalent formulations of independence for random variables

8 Functions of Several R.V.’s and Their Expected Value

For X = (X;,Xa,...,X,), the mean vector is defined as the column vector of expected values of the

components Xj:

X1 E [X4]
X5 E [X5]
myx = E [X] =E 2
X, E [X,]
The correlation matrix has the second moments of X as its entries:
E[X7]] E[XiXo] - E[Xi1X,]
E[X>X:] E[X3] - E[X2X,)]
Rx = . . . .
E [XnXl] E [XnXﬂ e E [X?J

The covariance matrix of X = (X1, Xo,..., X,,) is defined as
Cov(X) =E [(X —my)(X —my)'].

In expanded form,

Var(Xl) COV(Xl,XQ) COV(Xth)
COV(XQ,Xl) Var(Xg) ce COV(XQ,Xn)
Kx = Cov(X) =
Cov(Xp,X1) Cov(X,,Xs) --- Var(X,,)

Both Rx and Kx are n X n symmetric matrices. The diagonal elements of Kx are given by the
variances Var[Xy] = E [(X; —mg)?] of the components of X. If these elements are uncorrelated, then
Cov(X;,Xx) = 0 for j # k, and Kx is diagonal. If the random variables X;,..., X, are independent,
then they are uncorrelated and Kx is diagonal. Finally, if the vector of expected values is 0, that is,

my, = E[Xy] =0 for all k, then
Rx = Kx.
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