
CST 3526 Stochastic Process Lecture 2 - 09/25/2025

Lecture 2: Review of Probability Theory II
Lecturer: Ziqiao Wang

In this lecture1, we will introduce several ways of specifying a discrete or continuous random variable
or distribution, including the cumulative distribution function, probability mass function, and probability
density function. We then cover functions of a random variable, the expected value and variance. Next, we
extend these concepts to pairs of random variables, discussing independence, correlation and covariance, as
well as conditional probability and conditional expectation.

1 CDF, PMF and PDF
All events of interest on the real line can be expressed as sets of the form {ζ : X(ζ) ≤ b}, b ∈ R.

Definition 1.1 (Cumulative distribution function). The cumulative distribution function (CDF) of a random
variable X is defined as the probability of the event {X ≤ x}:

FX(x) = P (X ≤ x) for −∞ < x < +∞.

Clearly, FX(x) is a function of the variable x, since its value changes as x varies.
We are now ready to state the fundamental properties of the CDF. From the axioms of probability and

their corollaries, it follows that the CDF satisfies the following properties:

(i) 0 ≤ FX(x) ≤ 1.

(ii) limx→∞ FX(x) = 1.

(iii) limx→−∞ FX(x) = 0.

(iv) FX(x) is a nondecreasing function of x, that is, if a < b, then FX(a) ≤ FX(b).

(v) FX(x) is continuous from the right, that is, for h > 0,

FX(b) = lim
h→0

FX(b+ h) = FX(b+).

(vi) P[a < X ≤ b] = FX(b)− FX(a).

(vii) P[X = b] = FX(b)− FX(b−).

(viii) P[X > x] = 1− FX(x).

Remark 1.1. If the CDF is continuous at a point b, then P (X = b) = 0.

We may loosely say that a R.V. X is discrete if it takes values from a countable set, i.e. ΩX = {x1, x2, . . . }.
A more formal definition is given below.

Definition 1.2 (Discrete R.V. and PMF). A discrete random variable X is defined as a random variable
whose CDF is a right-continuous, staircase function of x, with jumps at a countable set of points {x1, x2, . . . }.
The probability mass function (PMF) of a discrete random variable X is defined as:

pX(xk) ≜ P (X = xk) for xk ∈ ΩX .

1Reading: Chapter 4-5 of Leon-Garcia.
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Notably, the CDF of a discrete random variable is given by the cumulative probability of all outcomes
less than x, and can be expressed as a weighted sum of unit step functions:

FX(x) =
∑
k

pX(xk)u(x− xk),

where

u(x) =

{
0, for x < 0,

1, for x ≥ 0,

is the unit step function.

Definition 1.3 (Continuous R.V. and PDF). If FX(x) is continuous everywhere on R, then we say the
random variable is a continuous random variable. The probability density function (PDF) of a continuous
random variable X is defined as, for all x ∈ R,

fX(x) ≜


d

dx
FX(x), if

d

dx
FX(x) exists;

0, otherwise.

Definition 1.4 (Mixed Typy R.V.). A random variable which is neither continuous nor discrete is termed
a random variable of mixed type.

A mixed-type random variable is one whose CDF exhibits jumps at a countable set of points {x1, x2, . . . }
while also increasing continuously over at least one interval of x values. The CDF of such a random variable
can be expressed in the following form:

FX(x) = pF1(x) + (1− p)F2(x),

where p ∈ (0, 1), and F1(x) is the CDF of a discrete R.V. and F2(x) is the CDF of a continuous R.V.

xx+ dx
x

fX(x)

(a) P [x < X ≤ x+ dx] ≈ fX(x) dx a b
x

fX(x)

(b) P [a ≤ X ≤ b] =

∫ b

a

fX(x) dx

PDF. The PDF represents the “density” of probability at a point x in the following sense: for a sufficiently
small h > 0, the probability that X falls within a small interval around x, namely [x, x+h], is approximately
proportional to the value of the PDF at x.

P (x < X ≤ x+ h) = FX(x+ h)− FX(x) =
FX(x+ h)− FX(x)

h
h ≃ fX(x)h.

The PDF satisfies the following properties:

(i) fX(x) ≥ 0.

(ii) P (a ≤ X ≤ b) =
∫ b

a
fX(x)dx.
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(iii) FX(x) =
∫ b

−∞ fX(t)dt.

(iv) 1 =
∫ +∞
−∞ fX(t)dt.

The PDF completely specifies the behavior of continuous random variables.

2 Functions of a Random Variable
Let X be a R.V. and g(x) a real-valued function defined on R. Define Y = g(X), then Y is itself a R.V., and
the probabilities associated with the possible values of Y are determined by the mapping g(x).

The CDF of Y is defined as the probability of the event {Y ≤ y}. In principle, it can be obtained by
evaluating the probability of the equivalent event {g(X) ≤ y}.

Example 1 (A Linear Function). Let the random variable Y be defined by

Y = aX + b,

where a is a nonzero constant. Suppose that X has CDF FX(x). Find FY (y).
The event {Y ≤ y} occurs when A = {aX+ b ≤ y} occurs. If a > 0, then A = {X ≤ (y− b)/a}, and thus

FY (y) = P

(
X ≤ y − b

a

)
= FX

(
y − b

a

)
, a > 0.

On the other hand, if a < 0, then A = {X ≥ (y − b)/a}, and

FY (y) = P

(
X ≥ y − b

a

)
= 1− FX

(
y − b

a

)
, a < 0.

We can obtain the PDF of Y by differentiating with respect to y. Using the chain rule,

dF

dy
=

dF

du

du

dy
,

where u is the argument of F . In this case, u = (y − b)/a. Hence, for a > 0,

fY (y) =
1

a
fX

(
y − b

a

)
, a > 0,

and for a < 0,

fY (y) =
1

−a
fX

(
y − b

a

)
, a < 0.

The above two results can be written compactly as

fY (y) =
1

|a|
fX

(
y − b

a

)
. (1)

Example 2 (A Linear Function of a Gaussian Random Variable). Let X be a R.V. with a Gaussian PDF
with mean m and standard deviation σ:

fX(x) =
1√
2π σ

e−(x−m)2/2σ2

, −∞ < x < ∞. (2)

Let Y = aX + b, then find the PDF of Y . Substitution of Eq. (2) into Eq. (1) yields

fY (y) =
1√

2π |aσ|
e−(y−b−am)2/2(aσ)2 .

Note that Y also has a Gaussian distribution with mean b+ am and standard deviation |a|σ. Therefore,
a linear function of a Gaussian R.V. is also a Gaussian R.V..
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3 Expectation and Variance
Definition 3.1 (Expectation). The expected value or mean of a random variable X is defined by

E [X] ≜
∫ +∞

−∞
tfX(t)dt

Expectation is a linear operator:

(i) E [g(X) + h(X)] = E [g(X)] + E [h(X)].

(ii) E [aX] = aE [X].

(iii) E [X + c] = E [X] + c.

Definition 3.2 (Variance). The variance of the random variable X is defined by

Var[X] ≜ EX

[
(X − E [X])

2
]
= E

[
X2

]
− E2[X].

The standard deviation of the R.V. X is defined by

Std[X] ≜ (Var[X])
1/2

.

(i) Var[X + c] = Var[X].

(ii) Var[cX] = c2Var[X].

Definition 3.3 (Moments). The nth moment of the R.V. X is defined by

E [Xn] ≜
∫ +∞

−∞
xnfX(x)dx.

4 Two Probability Inequalities
Theorem 4.1 (Markov’s Inequality). If X is a nonnegative R.V. with mean E [X], then for any a ≥ 0

P (X ≥ a) ≤ E [X]

a
.

Theorem 4.2 (Chebyshev’s Inequality). Let X be a R.V. with variance σ2 and expected value m, then for
any a ≥ 0, we have

P (|X −m| ≥ a) ≤ σ2

a2
.

5 Pairs of R.V.’s
Consider a random experiment with sample space Ω and event class F . We now define a function that
assigns to each outcome ω ∈ Ω an ordered pair of real numbers (X(ω), Y (ω)). In other words, we are dealing
with a vector-valued R.V. that maps Ω into the real plane R2.

Suppose (X,Y ) takes values from a countable set ΩX,Y = {(xj , yk) : j = 1, 2, . . . ; k = 1, 2, . . . }. The
joint probability mass function of (X,Y ) specifies the probability of the event X = x, , Y = y for each
pair (x, y) ∈ ΩX,Y .

PX,Y (x, y) = P [{X = x} ∩ {Y = y}] ≜ P [X = x, Y = y]

for x, y ∈ R2.
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The joint PMF of (X,Y ) characterizes the joint behavior of X and Y . We are also also interested in the
probabilities of events involving each R.V. individually. These can be obtained from the marginal PMFs:

pX(xj) = P (X = xj) = P (X = xj , Y = Anything) =
∞∑
k=1

P (X = xj , Y = yk),

similarly,

pY (yk) = P (Y = yk) = P (X = Anything, Y = yk) =

∞∑
j=1

P (X = xj , Y = yk),

The joint cumulative distribution function of X and Y is defined as the probability of the event
{X ≤ x1} ∩ {Y ≤ y1}:

FX,Y (x1, y1) = P (X ≤ x1, Y ≤ y1).

The joint CDF satisfies the following properties.

(i) Monotonicity. The joint cdf is a nondecreasing function of x and y:

FX,Y (x1, y1) ≤ FX,Y (x2, y2) if x1 ≤ x2 and y1 ≤ y2. (3)

(ii) Boundary values.

FX,Y (x1,−∞) = 0, FX,Y (−∞, y1) = 0, FX,Y (∞,∞) = 1. (4)

(iii) Marginals (remove one constraint).

FX(x1) = FX,Y (x1,∞) and FY (y1) = FX,Y (∞, y1). (5)

(iv) Right–continuity in each coordinate (“north” and “east”).

lim
x→a+

FX,Y (x, y) = FX,Y (a, y) and lim
y→b+

FX,Y (x, y) = FX,Y (x, b). (6)

(v) Probability of a rectangle.

P (x1 < X ≤ x2, y1 < Y ≤ y2) = FX,Y (x2, y2)− FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1). (7)

We say that the R.V.’s X and Y are jointly continuous if the probabilities of events involving (X,Y ) can
be expressed as an integral of a PDF. Specifically, there exists a nonnegative function fX,Y (x, y) called the
joint PDF, defined on the real plane such that for every event B, a subset of the plane,

P ((X,Y ) ∈ B) =

∫
B

∫
fX,Y (x

′, y′)dx′dy′.

When B is the entire plane, the integral must equal one:∫ ∞

−∞

∫ ∞

−∞
fX,Y (x

′, y′)dx′dy′ = 1.

The joint CDF can be obtained in terms of the joint PDF of jointly continuous R.V.’s by integrating over
the semi-infinite rectangle defined by (x, y):

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (x

′, y′)dx′dy′.
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It then follows that if X and Y are jointly continuous R.V.’s, then the PDF can be obtained from the
CDF by differentiation:

fX,Y (x
′, y′) =

∂FX,Y (x, y)

∂x∂y
.

The probability of a rectangular region is obtained by letting B = {(x, y) : a1 < x ≤ b1, a2 < y ≤ b2}:

P (a1 < X ≤ b1, a2 < Y ≤ b2) =

∫ b1

a1

∫ b2

a2

fX,Y (x
′, y′)dx′dy′.

The marginal PDF’s fX(x) and fY (y) are obtained by taking the derivative of the corresponding marginal
CDF’s, FX(x) = FX,Y (x,∞) and FY (y) = FX,Y (∞, y). Thus,

fX(x) =

∫ ∞

−∞
fX,Y (x, y

′)dy′,

and
fY (y) =

∫ ∞

−∞
fX,Y (x

′, y)dx′.

6 Independence, Conditional Probability and Conditional Expec-
tation

Discrete R.V.’s X and Y are independent if and only if the joint PMF is equal to the product
of the marginal PMF’s

pX,Y (xi, yk) = P (X = xj , Y = yk) = P (X = xj)P (Y = yk) = pX(xj)pY (yk).

In general, two R.V.’s X and Y are independent if and only if their joint CDF equals the
product of their marginal CDFs.

FX,Y (x, y) = FX(x)FY (y) for ∀x, y

Similarly, if X and Y are jointly continuous, then they are independent if and only if their
joint PDF equals the product of their marginal PDFs:

fX,Y (x, y) = fX(x)fY (y) for ∀x, y

Remark 6.1. If X and Y are independent R.V.’s, then the R.V.’s defined by any pair of functions g(X)
and h(Y ) are also independent.

The joint moments of two R.V. X and Y summarize information about their joint behavior. The jkth
joint moment of X and Y is defined by

E
[
XjY k

]
=


∫∫ ∞

−∞
xjyk fX,Y (x, y) dx dy, X, Y jointly continuous,∑

i

∑
n

x j
i y

k
n pX,Y (xi, yn), X, Y discrete.

It is customary to refer to the j = 1, k = 1 moment, E [XY ], as the correlation of X and Y . When
E [XY ] = 0, we say that X and Y are orthogonal.

The jkth central moment of X and Y is defined as the joint moment of the centered R.V.’s X − E [X]
and Y − E [Y ],

E
[
(X − E [X])

i
(Y − E [Y ])

k
]
.
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The covariance of X and Y is defined as the j = k = 1 central moment:

Cov(X,Y ) ≜ E [(X − E [X]) (Y − E [Y ])] = E [XY ]− E [X]E [Y ].

Note that Cov(X,Y ) = E [XY ] if either of the random variables has mean zero.

Example 3. Let X and Y be independent random variables. Find their covariance.

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
= E[X − E[X]]E[Y − E[Y ]] = 0,

where the second equality follows from the fact that X and Y are independent, and the third equality follows
from

E[X − E[X]] = E[X]− E[X] = 0.

Therefore pairs of independent random variables have covariance zero.

Multiplying either X or Y by a large constant increases the covariance, so we normalize it in order to
measure correlation on an absolute scale.

Definition 6.1 (Correlation Coefficient). The correlation coefficient of X and Y is defined by

ρX,Y =
Cov(X,Y )

σXσY
=

E[XY ]− E[X]E[Y ]

σXσY
,

where σX =
√
Var(X) and σY =

√
Var(Y ) are the standard deviations of X and Y , respectively.

The correlation coefficient is a number that is at most 1 in magnitude:

−1 ≤ ρX,Y ≤ 1. (8)

To establish the inequalities, we start from the fact that the expected square of a R.V. is nonnegative,
which yields the following inequality:

0 ≤ E

{(
X − E[X]

σX
± Y − E[Y ]

σY

)2
}

=1 ± 2ρX,Y + 1

=2(1± ρX,Y ).

The last equation implies Eq. (8).
The extreme values of ρX,Y are achieved when X and Y are related linearly, Y = aX + b; ρX,Y = 1 if

a > 0 and ρX,Y = −1 if a < 0.
R.V.’s X and Y are said to be uncorrelated if ρX,Y = 0. If X and Y are independent, then Cov(X,Y ) =

0, so ρX,Y = 0. Thus if X and Y are independent, then X and Y are uncorrelated. The following example
shows that it is possible for X and Y to be uncorrelated but not independent.

Example 4. Let Θ be uniformly distributed in the interval (0, 2π). Let

X = cosΘ and Y = sinΘ.

The point (X,Y ) then corresponds to the point on the unit circle specified by the angle Θ. The marginal
PDF’s of X and Y are arcsine PDF’s, which are nonzero in the interval (−1, 1). The product of the marginals
is nonzero in the square defined by −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1, so if X and Y were independent the point
(X,Y ) would assume all values in this square. This is not the case, so X and Y are dependent.

We now show that X and Y are uncorrelated:

E[XY ] = E[sinΘ cosΘ] =
1

2π

∫ 2π

0

sinϕ cosϕdϕ
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=
1

4π

∫ 2π

0

sin 2ϕdϕ = 0.

Since E[X] = E[Y ] = 0, then it implies that X and Y are uncorrelated.

Note that if X and Y are jointly Gaussian and ρX,Y = 0 then X and Y are independent
random variables.

Definition 6.2 (Conditional PMF). For X and Y discrete random variables, the conditional PMF of Y
given X = x is defined by:

pY (y | x) = P (Y = y | X = x) =
P (X = x, Y = y)

P (X = x)
=

pX,Y (x, y)

pX(x)

for x such that P (X = x) > 0.

We define pY (y | x) = 0 for x s.t. P (X = x) = 0. Note that pY (y | x) is a function of y over the real
line, and that pY (y | x) > 0 only for y in a discrete set {y1, y2, . . . }.

Definition 6.3 (Conditional CPF). Suppose Y is a continuous random variable and X is a discrete R.V.,
then the conditional CDF of Y given X = xk is defined as

FY (y | xk) =
P (Y ≤ y, X = xk)

P (X = xk)
, for P (X = xk) > 0.

If X is a continuous R.V., then the conditional CDF of Y given X = x is defined as

FY (y | x) = lim
h→0

FY (y | x < X ≤ x+ h).

Notice that

FY (y | x < X ≤ x+ h) =
P [Y ≤ y, x < X ≤ x+ h]

P [x < X ≤ x+ h]

=

∫ y

−∞
∫ x+h

x
fX,Y (x

′, y′) dx′ dy′∫ x+h

x
fX(x′) dx′

=

∫ y

−∞ fX,Y (x, y
′) dy′ h

fX(x)h
.

As we let h approach zero,

FY (y | x) =
∫ y

−∞ fX,Y (x, y
′) dy′

fX(x)
. (9)

Definition 6.4 (Conditional PDF). The conditional PDF of Y given X = xk, if the derivative exists, is
given by

fY (y | xk) =
d

dy
FY (y | xk),

and the conditional PDF of Y given continuous X = x is then:

fY (y | x) = d

dy
FY (y | x) = fX,Y (x, y)

fX(x)
. (10)

Definition 6.5 (Conditional Expectation). The conditional expectation of Y given X = x is defined by

E[Y | x] =
∫ ∞

−∞
yfY (y | x) dy.
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In the special case where X and Y are both discrete random variables we have:

E[Y | xk] =
∑
yj

yj pY (yj | xk). (11)

Clearly, E[Y | x] is simply the center of mass associated with the conditional PDF or PMF.

Remark 6.2. The conditional expectation E[Y | x] can be viewed as defining a function of x: g(x) = E[Y | x].
It therefore makes sense to talk about the random variable g(X) = E[Y | X]. We can imagine that a random
experiment is performed and a value for X is obtained, say X = x0, and then the value g(x0) = E[Y | x0] is
produced. We are interested in E[g(X)] = E[E[Y | X]]. In particular, we have

E[Y ] = E[E[Y | X]], (12)

where the RHS is
E[E[Y | X]] =

∫ ∞

−∞
E[Y | x]fX(x) dx, (13)

E[E[Y | X]] =
∑
xk

E[Y | xk]pX(xk) (14)

If X and Y are jointly continuous random variables. Then

E[E[Y | X]] =

∫ ∞

−∞
E[Y | x]fX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
yfY (y | x) dy fX(x) dx

=

∫ ∞

−∞
y

∫ ∞

−∞
fX,Y (x, y) dx dy

=

∫ ∞

−∞
yfY (y) dy

= E[Y ].

The above result also holds for the expected value of a function of Y :

E[h(Y )] = E[E[h(Y ) | X]].

In particular, the kth moment of Y is given by

E[Y k] = E[E[Y k | X]].

7 Multiple R.V.’s
Random vector X = [X1, . . . , Xn]

Definition 7.1 (Joint CDF). The joint CDF of X1, . . . , Xn is defined as the probability of an n-dimensional
semi-infinite rectangle associated with the point (x1, . . . , xn):

FX(x) ≜ FX1,...,Xn
(x1, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) .

Definition 7.2 (Joint PMF). The joint PMF of n discrete random variables is defined by

pX(x) ≜ pX1,...,Xn
(x1, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn) .
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A family of conditional PMF’s is obtained from the joint PMF by conditioning on different subcollec-
tions of the random variables. For example, if pX1,...,Xn−1(x1, . . . , xn−1) > 0, then

pXn
(xn | x1, . . . , xn−1) =

pX1,...,Xn
(x1, . . . , xn)

pX1,...,Xn−1
(x1, . . . , xn−1)

.

Repeated applications yield the following very useful expression (chain rule):

pX1,...,Xn(x1, . . . , xn) = pXn(xn | x1, . . . , xn−1) pXn−1(xn−1 | x1, . . . , xn−2) · · · pX2(x2 | x1) pX1(x1).

Random variables X1, X2, . . . , Xn are jointly continuous random variables if the probability of any
n-dimensional event A is given by an n-dimensional integral of a probability density function:

P (X ∈ A) =

∫
x∈A

∫
· · ·

∫
fX1,...,Xn(x

′
1, . . . , x

′
n) dx

′
1 · · · dx′

n,

where fX1,...,Xn(x1, . . . , xn) is the joint PDF.
The joint CDF of X is obtained from the joint PDF by integration:

FX(x) = FX1,...,Xn
(x1, . . . , xn) =

∫ x1

−∞
· · ·

∫ xn

−∞
fX1,...,Xn

(x′
1, . . . , x

′
n) dx

′
1 · · · dx′

n.

The joint PDF (if the derivative exists) is given by

fX(x) ≜ fX1,...,Xn
(x1, . . . , xn) =

∂n

∂x1 · · · ∂xn
FX1,...,Xn

(x1, . . . , xn).

The marginal PDF for a subset of the random variables is obtained by integrating the other variables
out. For example, the marginal pdf of X1 is

fX1(x1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX1,...,Xn(x1, x

′
2, . . . , x

′
n) dx

′
2 · · · dx′

n.

As another example, the marginal PDF for X1, . . . , Xn−1 is given by

fX1,...,Xn−1
(x1, . . . , xn−1) =

∫ ∞

−∞
fX1,...,Xn

(x1, . . . , xn−1, x
′
n) dx

′
n.

A family of conditional PDF’s is also associated with the joint pdf. For example, the PDF of Xn given
the values of X1, . . . , Xn−1 is

fXn
(xn | x1, . . . , xn−1) =

fX1,...,Xn
(x1, . . . , xn)

fX1,...,Xn−1
(x1, . . . , xn−1)

.

if fX1,...,Xn−1(x1, . . . , xn−1) > 0.
Repeated such applications yield an expression:

fX1,...,Xn(x1, . . . , xn) = fXn(xn | x1, . . . , xn−1)fXn−1(xn−1 | x1, . . . , xn−2) · · · fX2(x2 | x1) fX1(x1).

Independence As shown in Table 1, independence means the joint distribution factorizes into the product
of the marginals.
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Case Independence Condition

General (CDF) FX1,...,Xn
(x1, . . . , xn) = FX1

(x1) · · ·FXn
(xn)

Discrete (PMF) pX1,...,Xn
(x1, . . . , xn) = pX1

(x1) · · · pXn
(xn)

Continuous (PDF) fX1,...,Xn
(x1, . . . , xn) = fX1

(x1) · · · fXn
(xn)

Table 1: Equivalent formulations of independence for random variables

8 Functions of Several R.V.’s and Their Expected Value
For X = (X1, X2, . . . , Xn), the mean vector is defined as the column vector of expected values of the
components Xk:

mX = E [X] = E


X1

X2

...

Xn

 ≜


E [X1]

E [X2]

...

E [Xn]

 .

The correlation matrix has the second moments of X as its entries:

RX =


E
[
X2

1 ]
]

E [X1X2] · · · E [X1Xn]
E [X2X1] E

[
X2

2

]
· · · E [X2Xn]

...
...

. . .
...

E [XnX1] E [XnX2] · · · E
[
X2

n

]
 .

The covariance matrix of X = (X1, X2, . . . , Xn) is defined as

Cov(X) = E
[
(X−mX)(X−mX)⊤

]
.

In expanded form,

KX = Cov(X) =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xn)

...
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) · · · Var(Xn)

 .

Both RX and KX are n × n symmetric matrices. The diagonal elements of KX are given by the
variances Var[Xk] = E

[
(Xk −mk)

2
]

of the components of X. If these elements are uncorrelated, then
Cov(Xj , Xk) = 0 for j ̸= k, and KX is diagonal. If the random variables X1, . . . , Xn are independent,
then they are uncorrelated and KX is diagonal. Finally, if the vector of expected values is 0, that is,
mk = E [Xk] = 0 for all k, then

RX = KX.
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